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Abstract—We decompose the honeybee’s olfactory pathway
into local circuits that represent successive processing stages and
resemble a deep learning architecture. Using spiking neuronal
network models, we infer the specific functional role of these
microcircuits in odor discrimination, and measure their con-
tribution to the performance of a spiking implementation of a
probabilistic classifier, trained in a supervised manner. The entire
network is based on a network of spiking neurons, suited for
implementation on neuromorphic hardware.

I. INTRODUCTION

Honeybees can identify odorant stimuli in a quick and
reliable fashion [1], [2]. The neuronal circuits involved in
odor discrimination are well described at the structural level.
Primary olfactory receptor neurons (ORNs) project to the
antennal lobe (AL, circuit 1 in Fig. 1). Each ORN is believed
to express only one of about 160 olfactory receptor genes [3].
ORNs expressing the same receptor protein converge in the
AL in the same glomerulus, a spherical compartment where
ORNs synapse onto their downstream targets. There are about
160 glomeruli in the honeybee AL, matching the number of
receptor genes. ORNs from one class (i.e., expressing the same
receptor protein) convey information about certain chemical
properties of the olfactory stimulus [4]. Each odorant activates
many different ORN classes, inducing a spatial response
pattern across glomeruli in the AL.

Strong lateral inhibitory interactions between glomeruli in
the AL make an impact on information processing [5], [6].
Lateral inhibition has also been shown to significantly increase
the performance of a classifier on high-dimensional data in a
machine-learning context [7].

From the glomeruli in the AL, uniglomerular projection
neurons (PNs) send their axons to Kenyon cells (KCs) in
the mushroom body, a central brain structure where different
sensory modalities converge and stimulus associations may
be formed [8]. At this stage, about 950 PNs project onto a
sizeable fraction of the total 160.000 KCs, providing a massive
“fan-out” of connections. It has been shown that this fan-out
enables efficient classification of odors [9], [10]. Connections
between PNs and KCs are realized within small local micro-
circuits, where PNs and KCs interact with an inhibitory cell
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Fig. 1. Processing hierarchy in the honeybee brain. The stages relevant to
this study are numbered for reference. Brain image taken from [12].

population [11] (circuit 2 in Fig. 1). The functional role of
those microcircuits is still unclear.

The arrangement of circuits along the processing hierarchy
resembles a deep architecture in which each stage plays a
distinct functional role in transforming the input data. In the
present work, we illustrate how lateral inhibition enhances
linear separability of stimulus patterns by increasing contrast
between input dimensions. We assess pattern separability using
a classifier network based on spiking neurons that operates
with a biologically plausible learning rule. In addition, we
demonstrate how microglomerular microcircuits create non-
linear transformations of the input patterns in order to over-
come fundamental limitations of the neuronal classifier.

II. SIMULATION TECHNIQUES

A. Simulations of networks of spiking neurons

We used PyNN [13] with the NEURON backend [14]
to implement and simulate networks of spiking neurons,
using the IF_facets_hardware1 neuron model (a stan-
dard integrate-and-fire type neuron model with conductance-
based synapses). Simulations were distributed on a computing
cluster using PyDi (http://pydi-parallel.sourceforge.net). Data
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Fig. 2. Network schematic of the antennal lobe where lateral inhibition takes
place.

from parallel simulations was collected and analyzed using a
MySQL database.

B. Data generation

We sampled data points from two univarate, two-
dimensional gaussian distributions. The centroids were located
in the first quadrant of the coordinate system, with their
coordinates in the interval [0,1]. We controlled correlation
between data classes by adjusting the separation angle between
the centroids (smaller angle = higher correlation). The stan-
dard deviation of the underlying distributions were adjusted to
control the “noisiness” of the data classes.

III. NETWORK MODULES

A. Antennal lobe: Input and lateral inhbition

Input from receptor neurons arrives in the AL, where lateral
inhibition takes place (Fig. 2). ORNs receiving input from one
channel (i.e., one data dimension) converge onto PNs and LNs
in the same glomerulus. LNs from each glomerulus project
to PNs in all other glomeruli. PNs project to the mushroom
body (and to the classifier circuit via KCs, not shown). Data
points are presented to the network by setting the ORN’s spike
rate according to the numeric value of the respective input
dimension.

B. Mushroom body: Transforming input space

In the honeybee, olfactory information is processed by
circuits within microglomeruli in the lip region of the MB
calyx (Fig. 3A). Within microglomeruli, presynaptic boutons
from PNs synapse onto KC dendrites, and also onto dendrites
of neurons running in the protocerebral-calycal tract (PCT
neurons) [11]. There is evidence that those PCT neurons are
GABAergic and thus mediate inhibition [15].

We broke down the population connectivity within mi-
croglomeruli into two individual circuit realizations (Fig. 3B).
The trivial “pass-through” circuit relays information from PNs
directly onto KCs without any additional processing. In the
more interesting “inverter” circuit a PN projects onto a PCT
neuron, which in turn forms an inhibitory projection onto a
KC. The KC receives converging direct input from PNs from
many different glomeruli. Hence, the KC will always fire if
a stimulus is presented, except when the PN is active which
will inhibit KC firing indirectlyv via the PCT neuron. When

A) B)

Fig. 3. A) Microglomeruli in the MB calyx in the honeybee brain (blue:
PN presynapses, red: KC denrites, from [16] with permission), and the pop-
ulation connectivity within microglomeruli as suggested by [11]. B) Putative
realizations of individual circuits within microglomeruli (not exhaustive).
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Fig. 4. Schematic of the neuronal classifier. KC: Kenyon Cells, EN:
Mushroom-body extrinsic neurons. Excitatory synapses between KCs and ENs
are subject to reward-dependent plasticity. Two ENs encode for two decision
options.

tuned accordingly, this circuit inverts any input coming from
the PN that drives the PCT neuron.

There are many more possible arrangements of these circuits
which produce interesting transformations of the input, even
more so when not only two input dimensions but a higher-
dimensional input space is taken into account, which presents
interesting questions for future studies.

C. Mushroom body: Classifier stage

Recently it has been shown that neurons at the MB output
(MB-extrinsic neurons, circuit 3 in Fig. 1) exhibit reward-
dependent plasticity and reliably encode odor-reward associa-
tions [17]. In this light, the output of the MB corresponds can
be seen as the stage where stimuli get assigned a meaning,
or value, similar to data points getting assigned class labels
in a classifier. We modeled the classifier stage using a simple
decision circuit suitable for supervised learning.

Neurons in the classifier stage receive input from Kenyon
cells (KC). In the classifier circuit, input neurons converged
on two output neurons, i.e., decision neurons (Fig. 4). Upon
stimulus presentation, the output neuron with the higher firing
rate determined the decision of the classifier (A or B in the
figure).

We trained the classifier in a supervised fashion by pre-
senting stimuli (i.e., labeled data points) to the network and
updating the synaptic weights between input and decision
neurons after each stimulus presentation according to the
learning rule by Fusi et al. [18]: If the decision was correct
(i.e., if the presented data point was from class A and the
corresponding neuron “A” fired with a higher rate than the “B”
neuron), the weights of synapses on the winner neuron which
were active during stimulus presentation were potentiated. If
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Fig. 5. Impact of lateral inhibition on data representation. Data points are
colored according to class adherence. A) No, B) weak, C) strong lateral
inhibition. Weight indicates the conductance of inhibitory synapses.

the decision was incorrect, active synapses on the winner
neuron were depressed.

Synapses were tagged as “active” if the corresponding input
neuron fired at 50% or higher of is maximum designed firing
rate. Weights were updated according to eq. 1

∆w+ = q · (wmax−w) for potentiation,
∆w− = q · (wmin−w) for depression, (1)

where wmax = 0.0033 nS and wmin = 0.0 nS are maximal
and minimal bounds to the synaptic weight w, and q is the
stepwidth (set to 0.5).

Note that although we did not model reward explicitly, in
the scope of this study “reward” corresponded to “having
made the right choice”. Likewise, synaptic depression was
induced by the wrong choice being made, which corresponds
to punishment.

IV. CLASSIFIER PERFORMANCE

Our goal was to assess the contribution of two characteristic
neuronal microcircuits in the honeybee brain on processing
and classification of olfactory stimuli. To quantify the impact
of these circuits on stimulus discrimination, we implemented
a neuronal classifier based on spiking neurons, which can
be trained in a supervised manner (see III-C). Our goal was
to explore the capabilities of the neuronal classifier, and to
assess how the AL and MB circuits improve its performance.
We first analyze the impact of processing in the AL, then
we demonstrate a fundamental limitation of the learning rule,
and finally we show how this limitation can be overcome by
extending the network with microglomerular circuits in the
MB.

A. Decorrelation through lateral inhibition in the AL

First we analyzed the impact of lateral inhibition in the AL
on the representation of stimuli. Throughout all experiments,
we used two-dimensional toy data sets (sec. II-B). Fig. 5 shows
the impact of lateral inhibition on stimulus representation,
illustrated by a toy data set of two moderately overlapping
classes (leftmost panel). When lateral inhibition was increased,
data points were pushed towards either axis (winner-take-
most). In other words, inter-dimensional contrast increased
with increasing lateral inhibition.
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Fig. 6. Impact of lateral inhibition on classifier performance. Disks and
boxes indicate data points from two classes (input space). Color represents
classifier output sampled from a 50× 50 grid averaged over 20 training
runs (0.0=A, 1.0=B). A) weakly correlated classes, no lateral inhibition. B)
Strongly correlated classes, increased variance, no lateral inhibition. C) High
correlation and variance, with lateral inhibition.

B. Impact of lateral inhibition on classifier performance

We trained the neuronal classifier to discriminate between
classes from the toy data set. After training, we probed the
classifier’s decision on a regular grid of points in input space.
We repeated the training/testing procedure 50 times, each
time with a different, random order of the data points, and
calculated the average decision of the classifier at each grid
point (Fig. 6). When trained with data generated from dis-
tributions with well-separated centroids (i.e., low correlation
between classes) and low intra-class variance, the classifier
robustly succeeded in separating the input space into two
partitions corresponding to the two classes (Fig. 6A). When
variance and correlation were increased, the location of the
classifier’s separating hyperplane varied stronger across repe-
titions, leading to the average decision the be more “smeared
out” across the input space (Fig. 6B). Strengthening lateral
inhibition in the AL recovered the sharp hyperplane when
intra-class variance and inter-class correlation were high (Fig.
6C). Lateral inhibition thus improved the performance of the
neuronal classifier on correlated data.

C. Classifier performance on rotated data sets

When rotating the data sets by 45 degrees, 90 degrees and
135 degrees (counterclockwise), we found that the classifier
failed to learn any of those arrangements which are not
separable along the identity axis (Fig. 7). This behaviour can
be explained by the characteristic of the learning rule which
only changes synapses which were active during stimulus
presentation (section III-C). Hence, the classifier was not able
to learn absence of input in a dimension, which would have
been required to learn to separate the data in Fig. 7B, and, to
a lesser degree, 7A and C.

D. Benefit of microglomerular circuits in the MB

The above limitation can be overcome by extending the
network with microglomerular circuits (see III-B). With lateral
inhibiton disabled, we added inverter circuits and pass-through
circuits to the architecture. The classifier was then also able
to learn the rotated versions of the data (Fig. 8A, B and C).

We then increased the strength of lateral inhibition in the
AL network (presynaptic to the MB circuits), and increased
data variance and correlation as in Fig. 6. The classifier
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Fig. 7. Performance of the neuronal classifier for data classes which are not
separable along the identity diagonal, but rotated by A) 45 degrees, B) 90
degrees and C) 135 degrees counterclockwise.
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Fig. 8. Classifier performance with microglomerular circuits. A) Without
lateral inhibition, data set from Fig. 7, rotated by 45 degrees, B) 90 degrees, C)
135 degrees counterclockwise. D) With lateral inhibition and microglomerular
circuits, unrotated, E) rotated by 45 degrees, F) rotated by 135 degrees.

delivered the same performance for non-rotated data as without
microglomerular circuits, meaning that inverter circuits did
not impact negatively on classifier performance when used
together with lateral inhibition (Fig. 8D). The classifier also
learned to separate the data rotated by 45 degrees, but the
hyperplane was aligned along the identity diagonal (Fig. 8E).
This observation indicates that there may be an attractor for
the hyperplane to be oriented along the identity diagonal under
these conditions. Moreover, for the data set that was rotated
by 90 degrees, the hyperplane appeared to be curved in input
space (Fig. 8F).

E. Quantification of classifier performance

We quantified the performance of the classifier by training
it with datasets of varying difficulty rating and rotation, and
calculating classification accuracy using Matthew’s correlation
coefficient (MCC, [19]). MCC is defined as in eq. 2:

MCC =
TP ·TN+FP ·FN√

(TN+FN) · (TN+FP) · (TP+FN) · (TP+FP)
(2)

where TP is the number of true positives (member of class 1
and predicted class 1), TN the number of true negatives, FP
the number of false positives (member of class 0 but predicted
class 1), and FN the number of false negatives.

To allow for better visualization of the classifier’s per-
formance against a single metric of the data, we defined
a Difficulty Rating, whereby datasets with large separation
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Fig. 9. Comparison of classifier performance of the various network flavors
and a Naive Bayes classifier. LI: Lateral inhibition; INV: inverter circuits. A)
Performance on unrotated data, B) on data rotated by 45◦, B) on data rotated
by 90◦.

angles and small standard deviations were considered ’easy’
and had a low Difficulty Rating whilst those with small
separation angles and larger standard deviations were assigned
higher Difficulty Ratings. Difficulty rating is defined by eq. 3:

Difficulty Rating = (90−Φ)∗σ (3)

where Φ is the angle of separation between the centroids and
σ is the standard deviation of the class.

We compared the performance of the neuronal classifier
against a Naive Bayes classifier, a probabilistic classifier that
utilises Bayes theorem with an assumption of independence.
The Naive Bayes classifier is particularly well suited as a
reference classifier because it delivers decent perfomance on
many real-world data sets [20], [21], and it has no tuneable pa-
rameters which may skew any comparison when not adjusted
optimally (like, for example, in a support vector machine).

All networks succeed in learning to separate the data which
is separable along the identity diagonal (“unrotated data”,
Fig. 9A). Naturally, performance degrades as the separation
becomes more difficult. Lateral inhibition delivers a clear
benefit in performance – the networks with lateral inhibition
perform almost as well as the Naive Bayes classifier.

For the data which was rotated for 45◦, the “Default” net-
work (without lateral inhibition and without inverter circuits)
fails completely (Fig. 9B). Inverter circuits rescue some per-
formance. But best performance is achieved when combining
inverter circuits with lateral inhibition, pointing out the benefit
of inverter circuits in this situation.

Inverter circuits are absolutely required to learn separation
of the 90◦ rotated data (Fig. 9C). Pairing lateral inhibition
with inverter circuits increases performance. The Naive Bayes
classifier not affected by data set rotation, as expected.

Taken together, these results show that by equipping a
neuronal classifier with a lateral inhibition stage and inverter
circuits, we can robustly work around the limitation of the
biologically plausible learning rule. However, it is also obvious
that there is still potential for optimization in the circuits.

V. CONCLUSION AND FUTURE WORKS

A. Conclusion

We presented a neuronal classifier based entirely on a
network of spiking neurons. Inspired by the olfactory system
of the honeybee, we created a deep network architecture, in



which each processing stage performs a specific task. Lateral
inhibition in the AL supports separation of correlated data and
increases performance on overlapping classes. Microglomeru-
lar circuits in the MB provided transformations of the data that
enabled the classifier stage to learn separation of classes which
are not separable along the identity diagonal. Depending on the
location of data classes in input space, our network performs
comparably to a Naive Bayes classifier.

B. Future works
1) Real-world data sets: While the two-dimensional toy

data set we used here was very useful to probe the capabilities
and limitations of the neuronal classifier and the effect of the
circuits that we add, its usefulness for practical applications
is limited. We are currently testing the classifier on the
surrogate ORN responses from [7] and other high-dimensional
benchmark data sets.

2) Neuromorphic Hardware: We are porting our models
on neuromorphic hardware [22] as a first step towards imple-
mentations of fast and powerful neuromorphic classification
devices, applicable to a wide range of parallel sensor data.
At the time of writing this manuscript, we have a basic
implementation of the classifier network running on the hard-
ware. Preliminary results suggest that the performance on the
hardware is similar to that obtained in the simulated network.
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