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Improving odor classification through self-organized lateral inhibition
in a spiking olfaction-inspired network

Bahadir Kasap!$ and Michael Schmuker!->*

Abstract— In this study, we propose unsupervised learning of
the lateral inhibition structure through inhibitory spike-timing
dependent plasticity (iSTDP) in a computational model for
multivariate data processing inspired by the honeybee antennal
lobe. After exposing the network to a sufficient number of input
samples, the inhibitory connectivity self-organizes to reflect
the correlation between input channels. We show that this
biologically realistic, local learning rule produces an inhibitory
connectivity that effectively reduces channel correlation and
yields superior network performance in a multivariate scent
recognition scenario. The proposed network is suited as a
preprocessing stage for spiking data processing systems, like
for example neuromorphic hardware or neuronal interfaces.

I. INTRODUCTION

The insect olfactory system is capable of classifying odor-
ants by encoding and processing the neural representations
of chemical stimuli. The insect olfactory system is well
described at a structural level [1]. In the antennae of insects,
odors are transformed into a neuronal representation by a
number of receptor classes, each of which encodes a certain
combination of chemical features. Axons from each recep-
tor class converge into separate compartments (so-called
glomeruli) in the antennal lobe (AL). The activity pattern of
those glomeruli resembles a multivariate representation of the
stimulus space [2]. Olfactory receptors are broadly tuned and
hence the response spectra of glomeruli overlap, that is, they
exhibit channel correlation. It has been proposed that the AL
reduces this channel correlation through lateral inhibition,
expanding coding space and using it more efficiently for
distributed odor representations [3], [4], [5].

The insect olfactory system thus provides an efficient
basis for bio-inspired computational methods to process and
classify multivariate data with channel correlation. The AL
operates as a decorrelation filter on neural representations
of odors before they are delivered to higher brain areas. In
previous work, we demonstrated how lateral inhibition in an
olfaction inspired network reduces correlation between chan-
nels and facilitates separation of multivariate patterns [6], [7].
In this network, the strength of lateral inhibition between any
two glomeruli was set according to the correlation in their
odor response spectra, as previously suggested by modeling
studies [8].
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Spike-timing dependent plasticity (STDP) is a well es-
tablished mechanism for synaptic regulation. STDP adapts
synaptic strength according to the temporal relation of pre-
and postsynaptic spikes [9]. STDP is a local, unsupervised
learning mechanism that depends only on information avail-
able at the synapse and doesn’t rely on a teacher signal.
STDP is ubiquitously observed in various sensory systems in
vitro and in vivo [10]. Furthermore, STDP is experimentally
observed in inhibitory synapses as well [11], [12]. Recently,
it has been shown that STDP in inhibitory synapses facilitates
establishing a state of irregular, asynchronous activity in a
balanced spiking network [13].

Here, we propose an unsupervised learning of the lateral
inhibition structure in an olfaction-inspired neuronal network
via inhibitory spike-timing dependent plasticity (iSTDP).
To this end, we implemented an olfaction-inspired spiking
network model with lateral inhibitory connections that sup-
port iSTDP. We show how the inhibitory connectivity self-
organizes to effectively reduce channel correlation. Further-
more, channel decorrelation ensures odor pattern decorre-
lation which enhances the performance of a Naive Bayes
Classifier in a scent recognition scenario.

II. METHODS & RESULTS
A. Input data & Response patterns

The input data for the AL network model contained
836 odorants from Sigma-Aldrich Flavors and Fragrances
Catalog [14]. Odorants in this data set are labeled according
to their scent (‘fruity’, ‘balsamic’, ‘green’, ‘nutty’ etc.)
and one odorant may bear more than one label. Odorants
in the data set were represented by 184 physico-chemical
molecular descriptors. These 184-dimensional vectors were
transformed into a ten-dimensional multivariate firing-rate
representation using ten virtual receptors (VRs [6]). In brief,
a VR is defined as a point in n-dimensional data space
and is used to encode n-dimensional real-valued multivariate
data into a k-dimensional firing rate representation using k
virtual receptors. The activity r; of the k-th VR depends on
the distance d(s,pi) between a data point s and a VR p;

according to
= d(sapk) _dmin (1)

dimax — dmin
with dmax and dpin, the largest and the smallest distance
encountered in the data set. In other words, a VR responds
strongly if the stimulus data point is close, and weakly if the
distance is large. Thus, VRs encode the real-valued input
data set into a bounded, positive representation that can be
converted into population firing rates.
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Fig. 1. Distribution of “Fruity” vs. “non-Fruity” odorants in The Flavors
and Fragrances data [14]. 2D PCA projection of 184-dimensional space,
48% total variance explained. Crosses mark positions of virtual receptors.

Virtual receptors are placed in data space using a self-
organizing map (SOM) [15]. Consequently, VRs cover all
relevant parts of chemical space and preserves the local
topology in their low-dimensional projections. Fig. 1 depicts
a two-dimensional projection of the original 184-dimensional
data set and the locations of the VR placed by the SOM.

We used the SOMMER application [16] to train SOMs
with a 2 x 5 toroidal architecture, yielding a ten-dimensional
VR representation. In the scope of our model, the evoked
response patterns correspond to activation of receptors in the
AL.

The VR encoding mimicks two important properties of
the olfactory code: Each odorant activates multiple receptors
(redundant coding) and each receptor is activated by several
odorants (broad tuning curves). Furthermore, odors that
are chemically similar according to their location in the
184-dimensional chemical property space evoke similar VR
response patterns.

B. Network Layout

Our network model comprises two stages and is directly
inspired by the insect olfactory system (Fig. 2). In the first
stage, the response of the VRs is translated into spiking ac-
tivity of k populations of olfactory receptor neurons (ORNs)
using a stochastic point process model. To this end, we used
Poisson neurons as ORNSs to generate independent spiking
events based on the population firing rate. The VR activity
pattern was mapped into the firing rate interval [0,120]
spikes/s, such that the lowest VR response was transformed
into a poisson spike train with O spikes/s, and the highest
response elicited 120 spikes/s in the ORNS.

The second stage implements a decorrelation network in
analogy to the AL network in insects. Each ORN popula-
tion feeds on a separate population of excitatory projection
neurons (PNs). Local inhibitory neurons (LNs) are excited
by one PN population and project their inhibitory synapses
on all other PN populations. Those inhibitory synapses
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Fig. 2. The network, schematic. ORN: Olfactory receptor neuron, PN:
projection neuron, LN: local inhibitory neuron. Each ORN projects to PNs
in one glomerulus, which project on LNs in the same glomerulus, which
project to PNs in all other glomeruli. Weights from LNs to PNs support
STDP.

constitute lateral inhibition and are subject to iSTDP. In
the computational model, we used leaky integrate and fire
neurons as PN and LN population neurons with conductance-
based synapses. Connections from ORNs to PNs, from PNs
to LNs and LNs to PNs were made with a probability of 0.4.
We used 30 ORNs, 40 PNs and 10 LNs in each glomerulus.

The network scheme with lateral inhibition connections
applies a ‘winner-takes-most’ condition (a soft winner-takes-
all), where the populations with stronger response profiles
inhibit the ones with weaker responses to an odor pattern.
Consequently, lateral inhibition processes the input data
such that the contrast between channels is enhanced. The
connectivity of lateral inhibition was initialized uniformly
(that is, all weights equal) with a low initial value.

C. Self-organizing lateral inhibition with spike-timing de-
pendent plasticity

We exposed the network to stimulus patterns. Data points
were presented consecutively in random order. We presented
each of the 836 odor patterns for one second of biological
time. During training, synapses from inhibitory LNs to PNs
were subject to iSTDP as described in [13]. According to
this learning rule, pairs of pre- and post-synaptic spikes
caused potentiation of the inhibitory synapse by an amount
proportional to L (eq. 2),

—|A]
e TSTDP

2

~ 2TisTpp
with Ar the time difference between pre- and postsynaptic
spikes, and TsTpp defining the width of the iSTDP window



(fixed at 20ms in this study). Since the STDP time window
L is symmetric, the temporal order of pre- and postsynaptic
spikes is not important. In addition, each presynaptic spike
leads to depression of the synapse. The total change in
synaptic weight Aw can be summarized as in eq. 3,

Aw = n[pre x post — pg X pre], 3)

where pre and post are the pre- and postsynaptic activity
(their interaction defined by L), n is the learning rate and
Po is a constant that acts as a target rate for the postsynaptic
neuron. A detailed mathematical description and analysis of
the learning rule is provided in [13].

As a consequence of the learning rule, those synapses
between presynaptic LNs and postsynaptic PNs which re-
spond strongly to similar odors were potentiated, leading to
strong lateral inhibition between the neuron populations with
similar response profiles. Note that this relationship imposes
a self-regulating mechanism on the strength of inhibitory
synapses: Strong lateral inhibition between neuronal popu-
lations increases contrast in their firing rates, reducing the
similarity in their response profiles. Therefore, correlation
decreases as lateral inhibition increases. In consequence, the
strength of iSTDP-enabled LN-PN synapses will converge
to a value that reflects the similarity of response spectra
of the pre- and postsynaptic glomeruli. In this manner, the
lateral inhibition structure created through iSTDP reflects
the correlation structure in the input data (Fig. 3 A). As
a result, channel correlation at PN output after training is
significantly reduced compared to VR correlation, and the
available coding space is used more efficiently (Fig. 3 B).

D. Decorrelation and benchmarking network performance

In order to determine the benefit of self-organized lateral
inhibition for stimulus separation, we trained a Naive Bayes
classifier to predict the scent labeling of odorants based on
the activity pattern they evoke in PNs. We measured classifier
performance according to the recognition of “Fruity” and
“Non-Fruity” odors (5-fold stratified cross-validation, 1000
repetitions with random train and test data splits). Decorre-
lation by self-organized lateral inhibition performed signifi-
cantly better than unprocessed data (p < 10774, Wilcoxon
rank sum test; Fig. 3 C). It also outperformed decorrelation
by uniform lateral inhibition (all inhibitory weights identical,
p <1077,

Furthermore, we analyzed the final inhibitory weights and
resulting classification scores depending on different learning
rates 11 and target rates po. The learning rate 7 strongly
influenced how well the network reflected the correlation
structure in the data (Fig. 4 A). This stucture is well repro-
duced in the inhibitory connectivity for low learning rates.
For high learning rates, subsequent odor patterns overwhelm
the structure built during the representation of previous odor
patterns, counteracting a convergence to a value that matches
the input correlation.

Classification scores increased when the inhibitory con-
nectivity matched the VR correlation structure, but only for
high target rates pg (Fig. 4 B). Setting pg to a low value
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Fig. 3. Impact of iSTDP on inhibitory connectivity and channel correlation.
n= 1073, po = 10 Hz) A) Relationship between channel correlation and
average inhibitory weight after stimuli exposure. B) Correlation matrix of
the virtual receptors and output channels. C) Classifier performance before
and after exposure, and compared to uniform inhibitory weights.

resulted in stronger inhibition that reduced the postsynaptic
firing rate to a level close to pg. However, the spike count
observed from a poisson process in a fixed time interval (1
s in our case) exhibits higher variance when the average
firing rate is low. Thus, the spike count variance at low
rates acts like adding noise to the stimulus representation
and consequently has negative impact on the classification
performance.

In order to compare these results to a non-spiking approach
to decorrelation, we performed principle component analysis
(PCA) on the data and trained the Naive Bayes classifier on
the 10 components explaining the most variance in the data
set (total 80% explained). This approach achieved slightly
better results than the spiking iSTDP approach presented
above (avg. 72.0% correct, P»s/Pys = 69.9/74.4 for 1000
repetitions of fivefold cross-validation). Similarly, the per-
formance on the original untreated 184-dimensional dataset
yielded slightly better performance values (avg. 73.8% cor-
rect, Pys/Pys = 72.0/76.2). However, a direct comparison
of absolute classification scores between spiking and non-
spiking approaches is difficult, since the conversion of con-
tinuous values to spike trains adds noise and potentially
degrades the representation of the input data.

III. CONCLUSIONS

We presented the unsupervised learning of input data cor-
relation structure in a scent recognition scenario. We tested
how channel correlation affects the weights of STDP-enabled
inhibitory synapses in a network inspired by the insect
antennal lobe. We showed that upon exposure to artificial
stimulus patterns, the inhibitory connectivity of this network
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Fig. 4. Fitness and classification scores of different learning rates and target
rates. A) How well the final average inhibitory weights between populations
reflect the correlation between VR responses. B) Classification scores after
the data is processed by iSTDP.

adapts to the correlation structure of the input. The trained
network effectively reduces channel correlation in the output
indicating that iSTDP is a suitable unsupervised mechanism
to assert decorrelation of the input data without a priori in-
formation about the input. Reducing channel correlation with
the network improved stimulus separability when assessed
with a Naive Bayes classifier in an odor classification task.
Our network model incorporates a completely spike-based
method to reduce channel correlation, and is therefore suited
as a building block for bio-inspired data analysis frameworks,
for example on neuromorphic hardware systems supporting
spiking neural network models [17], [18].

The classification scores obtained using the transformed
data from the spiking network model were slightly lower
than obtained by a purely numerical approach. However,
it is also clear that the conversion of input data from nu-
merical representation to spike trains introduces noise, with
likely negative impact on the classification scores. Hence,
it is difficult to compare the absolute performance scores
obtained with spiking and non-spiking approaches. We have
performed such an analysis in an earlier study using a rate-
code model that was not affected by such stochastic noise [6].
The result was that both PCA and correlation-based lateral
inhibition achieve similar performance. PCA had maximum
performance at about 5-10 PCs, which declined as more
PCs were taken into account. In contrast, correlation-based
lateral inhibition reached maximum performance at higher
dimensionalities, which didn’t decline as more dimensions
were used. Hence, correlation-based lateral inhibition is

better suited for brain-like, massively parallel computing

where data dimensionality potentially has less impact on
computational efficiency, but rather the distributedness of

the code can be exploited without penalty on computational
efficiency. This circumstance argues for a neuromorphic
implementation of the present network as a preprocessing
step in neuromorphic data processing schemes.
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