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Zusammenfassung

Die Frage, wie das Gehirn visuelle Information verarbeitet, beschiftigt
Neurowissenschaftler schon seit mehreren Generationen. Ein Meilenstein
dieser Forschung sind die Ergebnisse von Hubel und Wiesel (Hubel &
Wiesel, 1962), die nachweisen konnten, daf$ Zellen in der priméren Sehrinde
der Katze bevorzugt auf orientierte Kontrastkanten antworten. Es stellte
sich heraus, daf§ dieses Verarbeitungskonzept auch in Primaten Anwen-
dung findet, sowie in den meisten anderen Spezies, die iiber eine primére
Sehrinde verfiigen. Seither geht man im allgemeinen davon aus, daf3 bei
der Verarbeitung visueller Information vor allem solche orientierten Kon-
trastkanten zédhlen, und daf diffuse Flachen kaum eine Rolle spielen.

Neuere experimentelle Ergebnisse zeigen jedoch, daf3 es in der priméaren
Sehrinde sowohl von Primaten als auch von Katzen Zellen gibt, die
antworten, wenn sich ihr rezeptives Feld innerhalb einer homogenen Fldche
befindet (Komatsu et al., 1996; Tani et al., 2003). Dies steht im Widerspruch
zu der Annahme, dafs homogene Flachen keinen Beitrag zur Verarbeitung
visueller Information leisten.

Ausgehend von diesen Befunden stellt sich die Frage, wie die Erken-
nung homogener Flichen im Cortex funktioniert. Gewaltig et al. (2002)
haben ein hierfiir Modell vorgestellt, in dem homogene Flidchen als
Bildareale mit niedriger Varianz der Intensitdt definiert sind.  Ho-
mogenitdtselektive Zellen berechnen die Varianz der Intensitdt in ihrem
rezeptiven Feld, und antworten wenn diese unter einem bestimmten
Schwellwert liegt.

Die Annahme, dafi Neuronen Varianz berechnen, ist zunidchst nur
schwer vorstellbar. Allerdings dndert sich diese Situation, wenn die In-
tensitdten in einen Aktionspotential-Latenzcode {iibersetzt werden. Hohe
Varianz der Intensitidten ergibt Aktionspotentiale mit hoher zeitlicher Streu-
ung, wahrend bei niedriger Varianz die Aktionspotentiale innerhalb eines



kiirzeren Zeitraums erzeugt werden. Dies kann von einem koinzidenz-
detektierenden Neuron ausgewertet werden, das bevorzugt reagiert, wenn
viele Aktionspotentiale innerhalb eines kurzen Zeitraums eintreffen. Diese
Eigenschaft ist nach aktuellem Stand der Wissenschaft Neuronen inherent.
Die Realisierung eines Modells fiir Homogenitdtsdetektion aufgrund dieser
biologisch realistischeren Annahmen steht im Mittelpunkt des praktischen
Teils dieser Arbeit.

Weiterhin ist zu beantworten, welchen Nutzen das Gehirn aus der Infor-
mation iiber homogene Flachen ziehen kann. Gewaltig et al. (2002) fiihren
hierzu an, daff durch Unterdriickung von orientierungsselektiven Zellen in-
nerhalb homogener Bildregionen eine Verbesserung der Bildreprasentation
im Cortex erreicht werden kann. Die Idee hierbei ist, dafd sowohl ori-
entierungsselektive als auch homogenitatsselektive Zellen keine perfekten
Detektoren sind, sondern durch ihre komplementédre Funktionsweise im
Zusammenspiel eine verbesserte, genauere Antwort liefern konnen. Die
vorliegende Arbeit greift diese Idee auf und untersucht den Effekt, den In-
formation tiber homogene Bildanteile auf die Verarbeitung visueller Infor-
mation haben kann.

Dariiber hinaus erlaubt das vorgestellte Modell eine sehr schnelle Ver-
arbeitungsgeschwindigkeit. Thorpe et al. (2001, 1996) haben gezeigt, dafs
Primaten dazu fahig sind, Objekte ca. 150 ms nach Prasentation zu klassi-
fizieren. Daraus folgt, daf} jedes Neuron in der Verarbeitungskette maximal
ein bis zwei Aktionspotentiale produzieren kann. Das hier vorgeschlagene
Modell erfiillt diese Voraussetzung.

Gliederungsiibersicht

In der Einleitung wird zuerst eine Ubersicht {iber das visuelle System von
Primaten gegeben. Dabei wird genauer auf den koniozelluldren Pfad einge-
gangen, da diesem eine besondere Rolle in dieser Arbeit zugeschrieben
wird. Weiterhin wird die oben erwdhnte Thorpe’sche Hypothese genauer
dargelegt. Schliefslich wird das oben genannte Modell von Gewaltig et al.
vorgestellt, auf dem diese Arbeit basiert.

Im zweiten Teil werden die theoretischen Grundlagen der Modellierung
dargelegt. Hierbei handelt es sich zum einen um das Neuronenmodell, das

in den Simulationen verwendet wurde, und zum anderen um die Theorie



der Synfire Chains. Fiir diese Arbeit sind im besonderen die Konzepte der
Puls-Packete und der Koinzidenzdetektion von Interesse.

Das eigentliche Modell wird im dritten Teil vorgestellt. Nach einer
Ubersicht wird das Arbeitsprinzip erldutert und danach auf die Implemen-
tierung eingegangen, sowie auf die Losung zweier Detailfragen, die fiir das
Verstdndnis der Funktionsweise des Modells wichtig sind.

Im vierten Teil wird gezeigt, was das Modell zu leisten im Stande ist,
wenn natiirliche Bilder damit analysiert werden. Ebenfalls wird gezeigt,
welche Ergebnisse die Interaktion von homogenitéts- und orientierungsse-
lektiven Zellen liefert.

Der fiinfte Teil dient der Diskussion des Modells. Zuerst wird ein Ver-
gleich mit dem vorhergehenden Modell, auf dem das vorgestellte basiert,
gezeigt. Danach wird die biologische Realisierbarkeit des Modells kritisch
untersucht. Schliefllich werden noch mogliche Folgeexperimente zur Ver-

feinerung des Modells vorgeschlagen.






Abstract

Beginning with the work of Hubel & Wiesel (1962), the representation
of retinal input in V1 has mostly been thought of being dominated by
luminance-contrast- or color-contrast-edges. However, Komatsu et al.
(1996) show that some cells in V1 also respond to diffuse illumination of
their receptive field, which conflicts with the classical view of receptive
tields in V1.

Based on these findings, Gewaltig et al. (2002) presented a model for
surface detection, which the present work is based on. Surfaces, or ho-
mogeneous image areas, are defined as areas with low intensity variance.
While the model by Gewaltig et al. inherently uses a rate code, the model
presented in this work uses a network of spiking neurons to detect homo-
geneous areas. Moreover, it uses only one spike per neuron and processing
stage, thus fulfilling the timing constraints of rapid feed-forward process-
ing, as postulated by Thorpe et al. (1996).

Given the evidence that information about homogeneous image regions
is present in the visual cortex, the question arises how the cortex might
achieve homogeneity detection, and which thalamic and cortical areas could
be involved. The present work provides an hypothesis addressing this ques-
tion. Further, it is demonstrated what benefits for visual processing can be

drawn from information about homogeneous image areas.
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Part 1: Introduction

What we see

Humans, like primates in general, are heavily depending on their visual ca-
pabilities. Vision enables us to explore our environment without physically
moving around and instead scan the scene from a safe place. It also en-
ables us to react in situations, where a possible threat or reward can not be

detected by our auditory, somatosensory or olfactory senses.

Imagine the following scenario: An early homo sapiens is on the hunt
in the savannah. Suddenly, a stone’s throw away, he sees an animal moving.
In this situation, it is vital to recognize the moving object as prey, which can
ensure his family’s dinner, or as a hungry predator, which wants him for
lunch. His other senses could not cope with this task, since he might not
smell the difference in unfavorable wind conditions, or feel it unless it is

already too late'.

Most of the time, seeing is an unconscious process which happens “all
by itself”, without the need for us to think about it. This is rather astonish-
ing, if one considers the effort necessary to construct a consistent view of
the outside world, provided just the rain of photons onto the retina. Gen-
erations of neuroscientists have dedicated their research to unraveling the
process of seeing, and most of them unraveled only bigger secrets. Never-
theless, today we have already gained a lot of knowledge about how the
brain processes what the eye sees. This work might just add a small piece
to the giant puzzle of how the brain works.

!Besides, the task of hunting itself would be very difficult if he were blind.




1.1 Overview of the visual system 1. INTRODUCTION

1.1 Overview of the visual system

In order to discuss neural processing in the primate visual system, it is es-
sential to know its anatomy. Since the anatomic details of each stage in the
visual system can fill books by themselves, this section can only serve as
a quick reference. I mainly provide facts which are necessary in the scope
of this work, especially in the discussion (part 5). Most of the facts can be
found in more detail in any textbook on neuroscience, such as Nicholls et al.
(2001) or Kandel et al. (2000). Especially Rodieck (1998) is a comprehensive
book on the physiological and functional properties of the first stages in the
visual system.

Figure 1.1 illustrates the flow of information in the visual system. Start-
ing with the retina, visual information flows from there to the lateral genic-
ulate nucleus (LGN), which relays it to the primary visual cortex, or V1.
Higher processing stages are V2, and afterwards the various areas in the
so-called ventral and dorsal pathways. In the scope of this work, the main
interest lies on processing from the retina to V1, which I present in more
detail in the following.

Dorsal I W2
{parietal) =—
pathway NS W,
LGM
/_ \ //JV":1 ]
Retina Gartial Y2 Figure 1.1: Overview of the

K_/gsma{;?” visual pathway.
/ From Kandel et al. (2000).

1.1.1 Retina: transforming photons to spikes

Seeing begins with the retina. Here, light is transformed to spike patterns,
and there is already some computation going on, such as the construction of
center-surround receptive fields. As figure 1.2 illustrates, we find different
types of cells in the retina, which I will describe shortly in the following.

2



1. INTRODUCTION 1.1 Overview of the visual system

Bipolar cell

Amacrine
cell

Ganglion
cell
Figure 1.2: Simplified
overview of cells in the
retina. Adapted from . ‘[ I T T —_—
Nicholls et al. (2001). Light fo optic nerve

Photoreceptors

Photons falling on the retina are being absorbed by photoreceptors, trans-
formed into chemical energy, starting a signal cascade, which in the end

leads to hyperpolarization of the photoreceptor membrane.

There are different types of photoreceptors: rods, which are very sensi-
tive to light. They only contribute to vision under conditions where very

few light is available.

If there is more light available, the cones come into play. They are less
sensitive to light, but different wavelength sensitivity makes color vision
possible. The three types of cones are L-, M- and S-cones, which are sensitive
for light of long, medium and short wavelength, respectively. There are
no S-cones in the fovea, the central part of the retina where visual acuity is
highest.
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Horizontal, bipolar and amacrine cells

Photoreceptors are laterally interconnected by horizontal cells. In first ap-
proximation, these cells sum up membrane potentials across several pho-
toreceptors and feed the summed potential back on them. They contribute
to constructing receptive field characteristics (see section 1.1.2). Nicholls
et al. (2001, p. 399) provide a demonstration of the principle. Bipolar cells
basically relay the membrane potential from photoreceptors and horizontal
cells to the ganglion cells. Amakrine cells, which receive input from bipolar

cells, send synapses back to the bipolar cells as well as on ganglion cells.

Ganglion cells

These are the first cells in the signal chain to actually produce spikes.
Most of them show distinct center-surround receptive field properties—i.e.
a stimulus in the center of the receptive field has a different effect on the

activity of the neuron than the same stimulus would have in the surround.

1.1.2 The concept of receptive fields

The notion “Receptive Field” is a widely used term in neuroscience. How-
ever, neuroscientists in different research fields will associate slightly differ-
ent meanings with this concept, which has often led to fierce discussions. In

this thesis, the following definitions are applied:

Classical receptive field (CRF): The area on the retina from which the ac-
tivity of a neuron can be influenced by light (Nicholls et al., 2001).

On- and off-regions: The classical receptive field of a neuron in V1 can be
divided into a center and an antagonistic surround. In on-center cells,
the optimal stimulus consists of a small spot of light (on) with a dark
surround (off) (Hubel & Wiesel, 1962).

1.1.3 Lateral Geniculate Nucleus (LGN): Relaying the reti-

nal signals to the brain

In the primate brain, retinal ganglion cells project their axons to a variety

of brain regions. The most prominent among these is the lateral geniculate

4



1. INTRODUCTION 1.1 Overview of the visual system

nucleus (LGN). In the following, I summarize its most important aspects
with respect to this work. Figure 1.3 illustrates the anatomy of the LGN.

In the primate brain, the LGN consists of 6 major layers of neurons. Lay-
ers 1,3 and 5 get input from the ipsilateral eye, 2, 4 and 6 from the contralat-
eral one. Cells in layers 6 -3 are relatively small in size, and therefore these
layers are called parvocellular (or P) layers (lat. parvus = small). Their recep-
tive fields are small, with high selectivity for color-stimuli and low contrast-
sensitivity, their responses are sustained. Parvo-cells mainly project to layer
4C3in V1.

Layers 1 and 2 are called magnocellular (or M) layers, because the cells
therein are relatively large (lat. magnus = large). Their receptive fields
are rather large, with high contrast-sensitivity, albeit virtually no color-
selectivity. Since these cells respond transiently, they are especially sensitive
to moving stimuli. Their axons terminate mainly in layer 4Ca in V1.

Intercalated between these 6 layers lie the koniocellular (or K) layers
(greek konis = dust). This phylogenetically old class of cells, rather inhomo-
geneous in itself, is physiochemically distinct from magno- and parvo-cells,
and has comparably large receptive fields. Most important for this work is
that the receptive fields of some konio-cells have no antagonistic surround,
thus they can respond to diffuse illumination (Rodieck, 1998). Another spe-
cialty of K-cells is that their axons project directly to layers 2 and 3 of V1, in
contrast to M and P cells, which project to layer 4. Moreover, while M and
P cells project exclusively to V1, K cell inputs have been identified in higher
areas of the ventral visual pathway (see Hernandez-Gonzales et al., 1994).

Figure 1.3: The lateral

s geniculate nucleus (LGN):
L3P schematic.  After Nicholls
""" Sl et al. (2001). P cells form

S llC Medial  the upper 4 layers, M cells the

lower 2. In between the layers,
the K cells are situated.

K

Ventral
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1.1.4 V1: The first cortical processing area

V1, as all cortical areas, has a layered structure, however with a different
functional organization. Most incoming axons from the M- and P-layers in
the LGN terminate in layer 4 (see above). From there, neurons project into
layers 2 and 3, and from there connections to higher areals in the visual sys-
tem, such as V4 and MT, are made. See figure 1.4 for a schematic overview.

Neurons in layer 4C mainly respond to oriented contrast edges. De-
pending on their receptive field characteristics (size, color- and contrast-
sensitivity), cells in layer 4C can be characterized as belonging to the P- or
M-channel. Cells which preferably respond to luminance contrast edges are
assigned to the M-channel, while color-contrast-sensitive cells belong to the
P-channel, in analogy to the terminology in the LGN.

Besides the anatomically distinct layers, V1 can be functionally divided
into columns, perpendicular to the layers. Neurons inside one such column
share their preferred stimulus, such as the orientation of a contrast edge.

Another fundamental characteristic of V1 is that the spatial arrangement
of stimuli on the retina is preserved in V1. In other words, two neighboring
stimuli on the retina excite neighboring cells in V1. This feature is called
retinotopy, and V1 is therefore said to contain a retinotopic map. A similar
kind of spatial mapping is observed in primary somatosensory cortex (so-

matotopy), or in primary auditory cortex (tonotopy).

cytochrome oxidase "blob"

1
2 2 - :
————— to other cortical areas
3 3 ___p (€0.V2,3,4,5MT)
|
4A A * A : Figure 1.4: Information
: flow in primary visual
48 ! cortex (V1) based on
l : anatomical connections.
4Ca| (4Ca |=1= === Adapted from Kandel et al.
/\ (2000). Most afferent fibers
acp 408 from the LGN terminate
- in layer 4, however K cells
5 A project their axons to the
6 cytochrome oxidase blobs in
layer 2/3.

K M P  (from LGN)
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Enhanced orientation tuning in Layer 2/3 of V1

In layers 2 and 3 of V1, the tuning of orientation-selective cells improves
significantly, i.e. the orientation range the cells respond to is smaller than in
layer 4. It has been speculated that this improvement may be achieved by
lateral connections between neurons responding to neighboring colinearly
oriented contrast edges (Li & Gilbert, 2002). However, as this work shows,
there are also other putative mechanisms which can explain the enhanced

tuning.

1.2 The role of the koniocellular pathway

1.2.1 Overview of the M- P- and K-pathway

Electrophysiology and psychophysics tell us that form, motion and color
are processed in parallel in the visual system (Nicholls et al., 2001). At first
sight, it is tempting to think that the three classes of cells in the LGN are the
neuronal substrate for the independent processing of different visual infor-
mation. If we look at the characteristics of each of the M, P and K channels,
or pathways, we find some interesting correlations to the psychophysically
claimed pathways:

The P-channel is color-sensitive and could therefore account for the color-
pathway; the M-channel, especially sensitive to moving stimuli, may state
the motion pathway; both could account for form.

There is yet little known about the K-channel. Formerly said to have a
rather modulatory role, recent experimental results suggest a more funda-
mental role for the K-channel in vision (see section 1.2.2 below).

In the LGN, the M, P and K channels are rather separated, without lateral
interconnections. This changes in V1: looking at the cytochrome oxidase
(CO) blobs in layers 2 and 3, we see all three channels intertwined. Here,
the channels seem to affect each other’s processing.

Further, cells in each of the M, P and K channels also respond to stimuli
which psychophysics would classify in another pathway. So one must take
care to distinguish the cellular M-, P- and K-classification from the functional
channel classification for form, motion and colour. When I refer to the K-

pathway or the K-channel in this work, I am using the cellular classification.

7



1.2 The role of the koniocellular pathway 1. INTRODUCTION

1.2.2 The koniocellular pathway in more detail

The K pathway plays a special role in this work. Unfortunately, we are just
beginning to understand the purpose of the K-Pathway; research up to now
mainly focused on the more popular M- and P-pathways. On account of
that I will summarize some of the recent research on the K-Path (adapted
from Koérner, 2001).

Input to the LGN

Input to the K-cells in the LGN is segregated from the M- and P-cells, in
such that LGN K-cells get input only from those retinal ganglion cells which
do not project to M- and P-layers of the LGN. As M- and P-projecting gan-
glion cells constitute about 90 % of all ganglion cells, K-cell input can arise
from less than 10 % of the ganglion cells, all with quite large receptive fields.
These 10 % contain at least 15-18 different types of ganglion cells, most of
them “phylogenetically old” (Rodieck, 1998). Unfortunately, it is very diffi-
cult to record from these cells: their rareness makes them hard to find, and
they have small cell bodies.

Among these ancient cells are the bistratified ganglion cells, which
mainly relay the information from S-cones (blue-on) to the middle pair of
K-cell layers in the LGN. S-cones are highly conserved across mammalian
species, and therefore considered as a phylogenetically ancient color sys-
tem (Silveira et al., 1999). In human and monkey retina, S-cones represent
5-10% of the cone mosaic and distribute in a quasi-regular fashion over
most of the retina with the exception of the central fovea (Calkins, 2001). As
the tonically firing bistratified ganglion cells compare the input from one
to three S-cones with input from 20 to 30 other cones, their output conveys
very rough information about wavelength and intensity in their large recep-
tive fields (Rodieck, 1998).

In the LGN

The six koniocellular layers in the LGN seem to be functionally distinct.
As the M- and P-layers, K-layers group in pairs receiving input from either
the ipsi- or contralateral eye. In macaques and owl monkeys, the middle

pair of K-layers relays information from small bistratified ganglion cells to

8



1. INTRODUCTION 1.2 The role of the koniocellular pathway

the CO blobs in V1, whereas the the most dorsal pair relays low-acuity vi-
sual information (from nondefined ganglion cells) to layer 1 in V1 (Ding &
Casagrande, 1998).

From the LGN to V1

Inside the CO-blobs, K-cell axons form quite large excitatory terminals,
which synapse closer to the pyramidal cell bodies than layer 4 axons do
(Ding & Casagrande, 1998). Thus, inside the blobs, K-input may be more
effective for pyramidal cells than intracortical input.

Latencies in the K-pathway

There is only few information available about latencies to visual stimulation
in the koniocellular pathway. The small size of K-cells in the LGN suggests
that they have small, slowly conducting axons. Indeed, for the prosimian
bush baby (Galago crassicaudatus), relatively long latencies of about 80 ms to
the onset of a visual stimulus have been reported (Irvin et al., 1986). How-
ever, the retina of bush babies has only a single type of M/L-cones and no
S-cones at all (Jacobs et al., 1996). Thus, there is no S-cone input to the LGN
K-layers (via the bistratified ganglion cells) as in macaques and humans,
and the delay times may not be comparable.

It has been speculated that the K-pathway may be homologous to the
slowly conducting W-pathway in cats, but generalising from cats to other
mammals may be inappropriate. For instance, W-like cells in rats have
latencies of about 3.18 ms after stimulation at the optic chiasm, while the
fastest responding Y-cell responded after 1.98 ms (Fukada et al., 1979). This
small difference would not argue for a very slow propagation.

Interestingly, in humans, electric field potentials evoked in V1 by S-cone
isolating stimuli appear earlier in time, namely with latencies of about 40
ms, than the common luminance-defined motion-specific potentials. This
indicates a very fast activation of V1 specific to K-pathway input (Morand
et al., 2000).

Possible functions of the K-pathway

The CO-blobs in layer 2/3 of V1 have often been linked to color vision
(Nicholls et al., 2001). Because of their projections to those blobs, and be-

9



1.2 The role of the koniocellular pathway 1. INTRODUCTION

cause of the input they get from different cone types, K-cells have been pro-
posed to contribute to color vision (Martin et al., 1997). However, the owl
monkey and the bushbaby (both are nocturnal primates), have only one
type of cone, and therefore lack color vision (Jacobs et al., 1996). Surpris-
ingly, these species do posses CO-blobs in V1, suggesting that blobs are not

exclusively involved in color vision.

Moreover, lower mammals like rats do have color vision, but do not pos-
sess CO-blobs. Phylogenetically, blobs are a relatively new structure. We
may speculate that CO-blobs have become necessary in evolution as reti-
nal receptive fields have become smaller to achieve higher vision acuity.
Because of the fine spatial resolution of the information conveyed by the P-
system, a system providing more coarse information about the extent of ob-
jects and surfaces may be of use in order to “keep the overview” and make
segmentation of the image into separate objects possible. Because of their
comparably large receptive fields, K-cells could transmit such information
to the CO-blobs.

The fact that color processing seems to play an important role in the CO-
blobs of color-seeing primates is well in congruence with this assumption,
since it also has been suggested that color can support object segmentation
in early vision (Gegenfurtner & Rieger, 2000).

Summary

The growing interest in the K-pathway has already led to some interest-
ing conclusions. However, there is no common theory about its purpose or
function. Moreover, many researchers do not even try to propose a func-
tion for it. Certainly, this is at least partly due to its inhomogeneous nature,
which may make it inappropriate to speak of the K-system. Regarding its
ubiquitous presence in primate visual systemes, it surely does have an impor-
tant function; otherwise it would not have made it through the evolutionary

optimization process.
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1. INTRODUCTION 1.3 Processing speed in the visual system

1.3 Processing speed in the visual system

1.3.1 Bottom-up versus top-down processing

The term bottom-up processing in the visual system describes the information
flow from the “lower” parts of the visual system (e.g. the retina) to higher
ones (e.g. V1). The term top-down describes the opposite direction: from
higher vision areas (e.g. IT) to lower ones (as V1).

Ullman (1995) proposed that object recognition works in a combined
bottom-up/top-down manner, because pure bottom-up processing is not
believed to be robust enough against noise and distractors. Other pro-
posed mechanisms to stabilize a noisy percept (e.g. the enhanced orienta-
tion tuning in layer 2/3 in V1) involve lateral connections between neu-
rons responding to neighboring colinear edge fragments (Li & Gilbert, 2002;
Ullman, 1995). Ullman (1995, chapter 8) provides a technically oriented
overview on more mechanisms. These mechanisms work fine. However,
iterative processing as well as lateral interaction requires time, which runs

contrary to fast processing.

1.3.2 Timing constraints from psychophysics

Thorpe & Imbert (1989) (cited in Thorpe et al., 1996) pointed out that pri-
mates can reliably classify objects in an image approx. 150 ms after presenta-
tion (see also Fabre-Thorpe et al., 2001), using only 10-15 ms per processing
stage. That is, each neuron in the processing chain has time to fire at most 1
or 2 spikes.

This especially means that there is simply not enough time for lateral in-
teractions between neurons to become effective, let alone top-down interac-
tion. In other words, processing must be performed in an essentially feed-
forward way. Moreover, given only one spike per neuron, it is impossible to
use some kind of rate code to transmit information. Consequently, mecha-
nisms for object recognition which involve lateral or top-down interaction
are inherently too slow to account for the rapid object classification capabili-
ties of primates.

To overcome the caveats of rate-coding, other coding strategies have
been proposed, involving spike latency or spike timing (see Thorpe et al.,
2001). It has also been shown that such coding strategies, which use only
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1.4 Homogeneity detection 1. INTRODUCTION

one spike per neuron, can be very effective, both in terms of time as in terms
of the amount of information transmitted (Van Rullen & Thorpe, 2001).

For such temporal coding stategies to work, it is necessary that neurons
are capable of producing their action potentials with high temporal accu-
racy. There is an ongoing debate on the variability of spike timing (see
Gewaltig (2000, chapter 1.3) for an overview), with strong evidence that
neurons actually are capable of producing spikes with a temporal accuracy
of 1 ms. I do not want to go into detail here, but instead refer to the discus-

sion of spike timing accuracy in part 5.

1.4 Homogeneity detection

1.4.1 Beyond Hubel and Wiesel: Homogeneous receptive
fields

As said above, the representation of retinal input in V1 is mostly dominated
by luminance-contrast- or color-contrast-edges, while diffuse illumination
does not elicit a response (Hubel & Wiesel, 1962). However, recent exper-
imental results suggest that this is not always true. Komatsu et al. (1996)
have reported that about one third of the neurons in the perifoveal area
in V1 of macaque monkeys respond to homogeneous surfaces in their re-
ceptive field; moreover, the receptive fields of these cells do not have an
antagonistic surround. Similarly, Friedman et al. (2003) found that 20% of
the neurons in V1 and V2 respond to uniform color and show no edge- or
orientation-selectivity. Tani et al. (2003) showed that uniform surfaces are
also represented in cat visual cortex. These findings conflict with the classi-
cal center-surround view of receptive field properties in V1.

1.4.2 A rate code model for homogeneity detection

Based on the above findings, Gewaltig et al. (2002) presented a computa-
tional model for surface detection, on which the present work is based on.
Surfaces are herein defined as homogeneous image areas, with homogene-
ity being defined as low gray-level variance. Figure 1.5 illustrates this.

The authors discuss how surface information can be used to support and

enhance the response properties of orientation-selective cells in V1. Homo-
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High gray-level
variance in
regions with
edges

Low gray-level
variance in
homogeneous
regions

Figure 1.5: Telling homogeneous from non-homogeneous image areas
by gray-level variance.

geneity and “edgy-ness” (oriented contrast edges) are mutually exclusive
at any image point (“Where there is a (homogeneous) surface, there is no edge”).
By inhibiting responses from orientation-selective cells in homogeneous ar-
eas, it should be possible to enhance the response properties of orientation-
selective cells in V1, reducing responses to spurious edges. In particular, it
is proposed that Konio-cells in the LGN contribute to the improved orienta-
tion tuning of orientation-selective cells in layer 2/3 of V1 compared to the

tuning in layer 4.

Working principle

The is divided into three parts: a retina, which is equivalent to the input
image, a layer of LGN K cells, with large receptive fields without antagonis-
tic surround, and a layer of homogeneity-detectors calculating the variance of
intensity in their receptive fields.

LGN K cells respond gradually to illumination of their receptive fields.
The effect of large receptive fields is mimicked by spatially smoothing the
retinal image (in more technical terms, the original image is low-pass fil-
tered). Additionally, a sigmoid activation function is applied pointwise to
model the neuron’s response properties.

Each homogeneity-detector cell evaluates the input it gets from a fixed
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number of LGN K cells. Effectively, it calculates gray-value variance inside
its receptive field. Low gray-value variance indicates that the neuron’s re-
ceptive field is inside an homogeneous image area.

Since the result of the variance calculation is continuous-valued, it can
be represented best by a rate code. Therefore, I will refer to this model as
rate code model. A more formal description of the mechanism is given in
appendix A.

Edge-detectors were not part of the former work. Instead, the main focus
was on demonstrating the effect of homogeneity information on the input to

orientation-selective cells.

1.5 Scope of this work

In the rate code model, it is assumed that homogeneity-detecting neurons
are able to estimate gray-value variance in their receptive field. In the
context of rate code neurons, this assumption is quite artificial. However,
Gewaltig et al. (2002) point out that the situation may change when intro-
ducing a spike-based latency code, in such a way that a distribution of input
densities will result in a similar distribution of spike latencies, which can be
evaluated by a coincidence-detecting neuron.

The realization of such a network of spiking neurons performing homo-
geneity detection dominates the practical part of this work (see part 3, “The
Model”). In contrast to the rate code based model, this is achieved by using
a spike-latency based coding strategy for the input image and subsequent
spike coincidence detection. Moreover, the network works in a purely feed-
forward manner, using only one spike per layer, thus meeting the timing
constraint set up by Thorpe & Imbert (1989).

In part 4 (“Results”), I show how the model performs with natural im-
ages as input. I provide a comparison between the results from the rate code
model and the spike-based model in the discussion in part 5.

Further, given the evidence for homogeneity detection in primate visual
cortex, two questions arise:

How? — Which thalamic and cortical structures could be involved in homo-

geneity detection?

Why? — What benefits can be drawn from homogeneity information?
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1. INTRODUCTION 1.5 Scope of this work

The first question is addressed by the hypothesis provided at the begin-
ning of part 3, extending the hypothesis given by Gewaltig et al. (2002), and
discussed in part 5. This is also where I address the second question: I show
what benefits information about homogeneous image regions can have in
cortical processing of visual input. In addition, I lay out possible experi-
ments to test the hypothesis.

Preliminary results from this work have been presented in poster form
at the Perception Conference at Tiibingen (Schmuker et al., 2003a) and at the
Gottingen Neurobiology Conference (Schmuker et al., 2003b).
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Part 2: Methods

This part outlines the theoretical framework for the present work. First, I
will provide a formal discussion of the neuron model used in the simula-
tions. Then, I shortly present the concept of pulse packets, which emerged
from synfire chain theory. On this theoretical background, I will present the
concept of coincidence detection, an inherent feature of neurons, and what

parameters of the model neuron affect this property.

2.1 The Lapicque neuron model

This work uses the Lapicque neuron model (Lapicque, 1907), with the exten-
sion of so-called a-shape post-synaptic currents (a-PSCs, see below). I pro-
vide some analytic descriptions for the Lapicque model neuron which are
relevant for this work. The focus shall be on exposing relevant parameters
instead of giving a complete mathematical analysis, since this has already
been done elsewhere. Most of this section is based on the book by Tuck-
well (1988), where a more extensive analytical and functional description is

available.

2.1.1 Response to currents and single spikes
Subthreshold response to injected current

The subthreshold response to injected current I(t) is described by the first
order linear differential equation
awv v

— 4+ ==1 . 2.1
Cdt+R (t), t>0 (2.1)

(' is the membrane capacitance, R is the membrane resistance (both as-

sumed constant), | is the membrane potential.
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2.1 The Lapicque neuron model 2. METHODS

The solution to this differential equation is

/ !
! g) ere dt’ . (2.2)

.t
V(t):VO—i—e_W/
0

Vo is the membrane resting potential. In general, nerve cells have resting
potentials in the order of —70 mV. Since the value of Vj is not significant
for the formal description of the model, it will for simplicity be omitted in
the following equations. This is only allowed because the model neuron is
linear in its aubthreshold behavior.
The product of R - C shall in the following be referred to as 7, the mem-
brane’s time constant:
R-C=r. (2.3)

Threshold

As the membrane potential reaches a fixed threshold 6, it produces an action
potential, or spike. This is why the Lapicque neuron is often referred to as
integrate-and-fire (IAF) model.

After having produced a spike, the neuron enters a refractory period of
length ¢z, during which it cannot produce another spike. Let the sequence
of times at which spikes are produced be {¢;, i = 1,2,...}. Then

L, <t<t;+t
G(t)_{oo’ psbstittn (2.4)

f, otherwise.

Further, during the refractory period, the membrane potential is set to V:

V(t) =V, t; <t<t;+1tr. (2.5)

Time to threshold: Spike latency

If the current input /(¢) is constant and maintained indefinitely, then as ¢t —
oo, the membrane potential reaches the steady-state value IR, given that it
does not exceed threshold:

Vvsteadystate =I-R. (26)

However, if threshold is reached a spike will be produced. The critical
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2. METHODS 2.1 The Lapicque neuron model

input current I.,;; can easily be obtained by setting (2.6) equal the thresh-

old 6. This yields
7
Ieris = E . (27)
We call the time at which the spike is produced the spike latency, relative
to the time ¢, when the current is switched on. To calculate the spike latency,

I first introduce the Heaviside step function:

t<t
H) :{ 0, t<to 2.8)
1, >t

Some constant current I switched on at ¢t = ¢, can then be described as
I(t)y=1-H(t—t) . (2.9)
Now let ¢, = 0. Inserting (2.9) into (2.2) yields
V(t)=TIR-(1- e?) >0, (2.10)

Given that the input current / is large enough to drive the membrane
potential to threshold, we can calculate spike latency as a function of /. So
let V (t) = 6 and solve for ¢:

t

0 = J-R(1—e%)

2.11
finally yields ¢ = —7-in(1— %) (2.11)

with ¢ the spike latency, 7 the membrane time constant (R - C), 6 the thresh-
old value for spike generation, and I a constant input current. Figure 2.1
illustrates eq. (2.11). Note thatas [ — I}, = tike — 0.

Icril

50 F

el . .
tspie(!) Figure 2.1: Input current vs. spike

latency. Spike latency decreases in
an inverse logarithmic manner with in-
creasing input current (see eq. (2.11)).
Neuron parameters: 7 = 10ms, C =
250pF, 0 = 15mV. ..+ denotes the
critical input current below which no
spike is triggered. The value is 375uA,
200 200 500 00 goo  as calculated with eq. (2.7).
Input Current [uA]

N w B
o o o
T T T

Spike Latency [ms]

=
o
T

o

19
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Spike response

When a spike arrives at the post-synaptic neuron, it elicits a post-synaptic
current (PSC) through the membrane. We model the PSC using a so-called
a-function PSC (Jack et al., 1985):

Ipsc(t) =kt-e™® [ t>0,a>0, (2.12)

with k£ being an amplitude factor, o = -1 where Teyn 15 the time-constant
Tsyn

of the synaptic current, and ¢, the time at which the spike arrives. The total

charge delivered to the neuron depends on 7yy,:

k/a? resp. k - Toyn. (2.13)

Inserting (2.12) into (2.2) yields the course of the post-synaptic mem-
brane potential after an incoming spike:

V)= ZeF [ te(F ) gy (2.14)

We integrate (2.14) by substituting 3 = £ — a, and obtain the post-synaptic
potential (PSP) in response to a spike

k-e t/ s € —1
psp(t) =4 ¢ <t.e - ) 7 (2.15)
! _
il e /T ,0=0.

2C

In this work, 7 is never equal to 7;,,, so 3 is never zero. Thus, only the first
case is relevant. Figure 2.2 shows how the synaptic current precedes the
resulting membrane potential in response to one input spike.

1.0

Current I(t)

Figure 2.2: Spike response. The input Membrane Potential V(t) - 13
spike arrives at t=0. Solid curve: the z
synaptic current, dashed curve: the re- z g
sulting membrane potential. Note that g §
scales are different for current and poten- 3 g
tial; current is depicted on the left, poten- £
tial on the right hand side. Neuron param- =
eters were Vo =0V, k=1, C=250pF, o/ . o
7 = 10ms, Teyn = 2ms. 0 5 10

time [ms]
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2.1.2 Impulse response and linear systems theory

In linear systems theory, an impulse is a function which is zero everywhere
except in one singular point, where it is infinite, in such a way that the inte-
gral from —oo to +oo is 1.! If the impulse response h(t) of a linear system is
known, one can compute the response y(t) of this system to an input signal
x(t) by convolution of the input with the system’s impulse response (see also
Papoulis (1977)):

—+00

y(t) = x(t) % h(t) = / (t — 7) h(r) dr (2.16)

—00

A system f can be called linear if and only if

fla-z)=a-f(z) and f(z+y)= fz)+ f(y). (2.17)

The differential equation (2.1) describing the subthreshold membrane
voltage response to current is linear and therefore fulfills this condition.
This means that we can consider the model neuron as a linear system (except
for the threshold). Further, if we consider an incoming spike as an incom-
ing impulse in the sense of linear systems theory, it follows that the neuron’s
response to a single spike can be interpreted as the neuron’s impulse re-
sponse. This allows us to compute the subthreshold neuron’s response for

any input.

2.2 Pulse packets and coincidence detection

2.2.1 Synfire chains

Moshe Abeles postulated the theory of synfire chains (Abeles, 1982a, 1991).
These are groups of neurons which forward synchronous spike volleys de-
pending on the width and amplitude of the packet, thus forming a func-
tional cell assembly. Abeles et al. (1993) show that such highly synchronized
discharge patterns of groups of neurons can actually be observed in the
brain of behaving monkeys. Gewaltig (2000) and Diesmann (2002) provide
a thorough analysis of properties and critical parameters of synfire chains.

!The so-called Dirac delta function fulfills this condition, and is therefore often used in
theoretical analysis of linear systems.
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2.2.2 Response to pulse packets

Diesmann et al. (1996, 1999) presented the concept of pulse packets to describe
synchronized spike volleys. Using a stochastic approach, pulse packets can
be characterized as Gaussian densities with two parameters, namely stan-
dard deviation of spike times o, and the number of spikes ngpike.s in the pulse
packet (Diesmann et al., 1996; Gewaltig, 2000). One can obtain the neuronal
response to such an input density by convolving the input density with the

impulse response. This is illustrated in figure 2.3.

2 o
z g
3 7 /L
] o
e~ * —
= =
"
time
time time
input density impulse response response

Figure 2.3: Obtaining neuron response by convolution. The input den-
sity is convolved with the system’s impulse response. This yields the neu-
ron's response to the given input density.

Decreasing the number of spikes n ;s leads to a smaller maximum PSP.
Changing n,.s means changing the area (or integral) under the density

curve (figure 2.4).

'spikes

spike density

time - time

input density response

Figure 2.4: Effect of ngpikes. Left: Two input densities differing in ngpcs-
The difference is in the area (or integral) under the density curves (gray
area). Right: The response evoked by the input density with smaller n5p;es
(dotted line) is smaller in amplitude and fails to reach threshold 6.

A decrease in PSP amplitude can also be obtained by increasing spike
time standard deviation o while keeping the spike number 7;.s constant

(see figure 2.5).
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spike density

time ) B time

input density response

Figure 2.5: Effect of 0. Left: Two input densities differing in o;. Right:
The input density with larger o, (dotted line) evokes a PSP smaller in
amplitude, failing to reach the threshold 6, but wider in time.

2.2.3 Coincidence detection

The fact that increasing o, leads to a smaller maximum PSP implies that the
same number of spikes is more likely to trigger an action potential in the
target neuron if the spikes arrive almost synchronously than if they arrive
in a more isolated fashion. This has already been argued by Abeles (1982a).
He also concluded that a cortical neuron effectively operates as a coincidence-
detector rather than as an integrator (Abeles, 1982b).

From this follows that, if np;.s is fixed, there is a threshold in the degree
of synchronization of the incoming spikes, or coincidence threshold, below
which they will fail to elicit a spike in the target neuron. The degree of
synchronization could be expressed either in terms of pulse packet width
oy, or, more qualitatively, in terms of interspike intervals (ISI), i.e. the time

between the arrival of two successive spikes.

Adjusting the “coincidence threshold”

The coincidence threshold depends on the integration window, i.e. the max-
imum time interval in which two spikes have to arrive in order to interact,
i.e. sum up in terms of the resulting PSP. In the model neuron, the width
of this integration window can effectively be adjusted using ;,,, the time-
constant of the synaptic current (eq. (2.12)).

Figure 2.6 (next page) shows that smaller values of 7, lead to shorter
PSPs. Further, according to eq. (2.13), less total charge is delivered to the
neuron, which in turn would lead to a smaller PSP amplitude. In the figure,
current amplitude has been adjusted to yield the same maximum potential.

If we look at the PSP elicited by two subsequently arriving spikes, its
maximum amplitude can be taken as a qualitative measure for the width of
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Figure 2.6: Effect of 75y,. Smaller 74, lead to shorter PSPs. Left: Post-
synaptic current course for three 7y,,. Right: Resulting PSPs.

the integration window. Figure 2.7 shows that for smaller 7;,,, two spikes
with the same interspike interval elicit a smaller maximum PSP.

In other words, the integration window gets smaller with smaller values
of 74y,. In turn, lower settings of 7;,,, require smaller interspike intervals to
drive the detector neuron to threshold, therefore “sharpening” its tuning to
coincident spikes.

Figure 2.7: Integration window gets
shorter when 7,,,, gets shorter. PSP for
Toyn = 4.0 ms (solid curve) and 74y, = 0.1
ms (dashed curve). Dotted lines: maxi-
mum PSP. Small arrows near the abscissa
depict incoming spikes. Interspike interval
is 10 ms. Data was obtained using the
simulator (see B.1), with Vj = —70mV,
in contrast to the data shown in figure
2.6, which was obtained analytically (V =
0omV).
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For the simulations in this study, a value of 0.63 ms for 7, yields the
best results (see also table 2 in appendix C.2). It is difficult to find biologi-
cally realistic values for the synaptic time constant in the literature. Smith
& Sherman (2002) use a value of 1 ms for 7y, in their biologically oriented
simulations of thalamic neurons, which is in the same order of magnitude
as the value used here. However, it must be said the neuron model used in
that study is conductance-based, and the equation which models synaptic
input is slightly different from the one used in this work. Nevertheless, the
parameters are comparable on a qualitative basis.
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Part 3: The Model

3.1 Overview

The model concept is based on the work of Gewaltig et al. (2002) (see section
1.4.2). It realizes the following hypothesis (depicted by fig. 3.1):

Homogeneity detection is performed in the K-Path. Konio-cells in the LGN,
with large receptive fields and no antagonistic surround, project to coin-
cidence detecting inhibitory interneurons in the cytochrome-oxidase (CO)
blobs in layer 2/3 of V1. These interneurons respond to homogeneous illu-
mination of their receptive fields. Contrast-edge responding M- and P-cells
in layer 4, with smaller receptive fields, also project to the CO-blobs, and
from there to higher processing areas. The interneurons in the blobs can
block the relay of edge-information in homogeneous image regions, thus
reducing the amount of edge-information to the most salient compounds,

allowing faster analysis of the scene by higher processing areas.

(. N

1 .
Figure 3.1: lllustration : to hlgher
of the hypothesis. Homogeneity CO- processing
Explanation see text (coincidence) "Blob” areas
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3.2 Working principle 3. THE MODEL

In contrast to the previous work, which implicitely uses a continuous
rate code, the present work uses a network of spiking neurons to perform ho-
mogeneity detection. Section 3.2 explains the working principle: By trans-
lating gray-value variance into spike-timing variance, the homogeneity-
sensitive neuron is realized by a coincidence-detecting neuron, allowing a
more realistic way of calculating gray-value variance.

Section 3.3 gives an overview on the implementation of the model.

The variance threshold, i.e. the amount of gray-value variance below
which the detector shall spike, is difficult to tackle analytically. I use an
empirical approach, which I present in section 3.4.

Further, as I explain in section 3.5, the variance threshold also depends
on the mean gray-value, i.e. the brightness of the stimulus in the receptive
field. In order to reduce this effect, on- and off-detectors are introduced,

sensitive to bright, respective dark homogeneous regions.

3.2 Working principle

The basic unit of this network consists of three parts (see fig. 3.2): a retina
(fig. 3.2A), a layer of konio cells in LGN (fig. 3.2B) and a K-driven coinci-
dence detecting neuron in V1 (fig. 3.2C)

A: retinal image C: homogeneity
detector in V1

receptive
field B: Konio cells

in LGN

Figure 3.2: Architecture of one homogeneity-sensitive unit. Each ko-
nio (or K) cell receives input from one retinal ganglion cell. K cell projec-
tions converge to a coincidence detecting neuron. The image area the K
cells cover defines the homogeneity detector’s receptive field.
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The retina directly feeds to the LGN konio cells. This part of the model is
identical to the rate code model, mimicking characteristics of large receptive
tields. High gray value leads to high K cell activation, while low gray-value
leads to lower activation.

Thus, K-cell spike-timing depends on the activation by the retina; i.e. the
higher the activation, the earlier (relative to stimulus onset) a spike is pro-
duced, and vice versa. The retinal activation of K-cells is adjusted such that
they always produce a spike, even if a pixel is completely dark (black). In
addition, K-cells in the model can fire only one spike during the simulation
time interval. This ensures that the number of spikes 7., is constant.

Figure 3.3 illustrates the working principle. If gray-value variance in
the receptive field of the homogeneity detector neuron is high, K cells will
produce spikes at different times, leading to a scattered pulse packet, which
tails to drive the detector neuron to threshold (see figure 3.3A). However,
low gray-value variance leads to a focused pulse packet, eliciting a spike in
the detector neuron (figure 3.3B).

S
£ B5 ;
s
<
[}
IS]
o
(]
=
I
_‘-é— ﬂ
2 70 | LGNK
— L gpikes
0 20 40
time [ms]
B 3
] s
c
2
) 2
S *) 2
S
— g LGN K
E - : 1 spikes
[ 0 20 40
time [ms]

Figure 3.3: Working principle. Network units as depicted in figure 3.2.
Only 5 of 25 input pixels are shown. A) Left: High gray-value variance
in the receptive field. Line thickness reflects K cell activation. Triangles
depict action potentials traveling along the axon. Right: Time-course of the
detector’s PSP. Plus-signs near the abscissa depict incoming spikes. B) Left:
Low gray-value variance in the receptive field. The homogeneity-detecting
neuron fires (illustrated by the star). Right: PSP with homogeneous input.
As threshold (-55mV, dashed line) is reached, a spike is produced.
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In terms of pulse packet theory, the gray-value distribution of an image
patch is translated into a spike-latency distribution. The width o, of the
resulting pulse packet depends on the gray-level variance in the receptive
field. Since ngpres is fixed, it depends only on o, if a spike in the target
neuron is triggered (the coincidence threshold, see section 2.2.3).

In consequence, there is a threshold in gray-value variance, below which
the homogeneity-sensitive neuron will produce a spike.

3.3 Implementation

The model is realized by computer simulation of a network of integrate-
and-fire neurons, i.e. Lapicque neurons with a-shape synaptic currents (see
sec. 2.1). I use the NEST-simulator (see appendix B) for the simulations. The
core simulation is implemented as a SLI'-script.The input to this simulation
script is an image file, which has already been preprocessed by the model

retina.

3.3.1 Retina

K-projecting ganglion cells have large receptive fields. In order to mimick
the effect of such large receptive fields, the input image is convolved with
a Gaussian kernel. Subsequently, a sigmoidal activation function is applied
pointwise, to emulate a threshold in neuronal activation. This part of the
model is identical to the rate code model, as described in appendix A.1.

3.3.2 LGN K-cells

In the model LGN, pixel gray values from the stimulus image are translated
into spike-latencies. This is achieved by translating the pixel’s gray value W

into a current /;,, using the formula

(Imaz - [min)

—_ W 3.1
Wmaw - szn ( )

Lip = Imin +

with Wi /mae. being the minimal/maximal gray value in the image, and

Lin/maa the minimal/maximal input current.

1Synod Language Interpreter — an interpreter language for the NEST-simulator
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The resulting current is injected into an LGN neuron. I,,;, was set to
400pA, Iee to 7500 A. Using eq. (2.11) it follows that spike latency was in
the range from 6.3 to 27.7 ms. Thus, 28 ms after stimulus onset, all LGN
K-cells have produced a spike. These values were chosen to approximate
spike latencies in primate visual cortex: After light has fallen on the primate
retina, there is a delay of approximately 40 ms until all first spike responses
related to that stimulus have arrived in V1.

Modeling retinal input to LGN K-cells as current input may not be very
realistic, since axons from retinal ganglion cells transmit spikes, not cur-
rents, to the LGN. I use current stimulation to mimick the effect of a biolog-
ically plausible firing rate, in the sense that high activation, be it through
tiring rate or current stimulation, leads to a low-latency response spike.

By setting the refractory period for LGN neurons to a larger value than
the simulation time, it is ensured that the number of spikes produced in
response to a stimulus is constant, since every LGN neuron produces exactly

one spike. Thus, LGN cells in the model have extremely transient responses.

3.3.3 Coincidence detecting neurons

The homogeneity detecting neuron in V1, as the LGN K cells in the model, is
implemented with an integrate-and-fire neuron of the Lapique type. As de-
scribed in section 2.2.3, the coincidence threshold can be adjusted by mod-
ifying 7,,,, the time-constant of the post-synaptic current in response to an
action potential.

I chose a value of 0.63 ms for 7;,,, and 0.75 pF' for the membrane capac-
itance C. These parameters yield best results for most stimulus images. In

appendix C.1, I discuss why C must also be adjusted when 7, is changed.

3.3.4 Orientation-selective cells

Modeling orientation-selective cells can almost be called a research field on
its own (see e.g. the review article by Shapley et al., 2003). The goal of this
work is to demonstrate the benefit of homogeneity information to efficient
processing in the visual system. Since orientation-selective cells are no ma-
jor element of this work, they are realized using a rather simple approach.
By definition, an orientation-selective cell shall respond if there is a

luminance-contrast edge inside its receptive field, and the orientation of this
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edge is inside a certain range?. In the model, this is achieved by connecting
retinal ganglion cells to the orientation-selective cells with an asymmetric
weight matrix reflecting the cell’s receptive field. As above, gray-values of
the stimulus image are translated into activation currents using eq. (3.1).
However, since orientation-selective cells have smaller receptive fields, the
preprocessing stage mimicking large receptive fields is skipped, and the
stimulus image is fed to the edge-sensitive cells without preprocessing. The
model comprises orientation-selective cells for four orientations. The ac-
tivation currents are fed to the orientation-selective cells using the weight

matrices for the respective orientations:

05 1 —-0.5 1 —-05 —-0.5
0°: | =05 1 —-051], 45°: | =05 1 —05|,
=05 1 -0.5 =05 =05 1
—-0.5 —05 —0.5 -05 —-05 1
90° : 1 1 1 , 135°:| —05 1 —05
-0.5 —-05 —-0.5 1 -05 —-05

For the 0° orientation-selective cell, the three vertical pixels in the cen-
ter column of the receptive field activate the orientation-selective cell with
weight factor 1, while the six pixels vertically flanking the center to the left
and to the right have a negative influence on cell activation, with weight fac-
tor —0.5 respectively. In consequence, the activation current the cell receives
will be greatest if there is a bright vertical line in the center of its receptive
field, and it will still be large if there is a vertical contrast-edge. The current
will be zero for homogeneous illumination, and also if the orientation of the
contrast-edge is perpendicular to the neuron’s preferred orientation. The
mechanism works similarly for the other orientations.

In addition to skipping the preprocessing stage mimicking large recep-
tive fields, receptive fields of orientation-selective cells are considerably
smaller than those for homogeneity-detectors, namely 3x3 pixels, com-
pared to 5x5 pixel for the homogeneity-detectors.

Finally, the interaction with the homogeneity-detecting cells is modeled
after the paradigm Where there is a surface, there is no edge, i.e. edges and

homogeneous areas mutually exclude each other, with homogeneous ar-

2This is why such cells are often called “edge-detectors”.
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eas being dominant. Thus, retino-topographically spoken, everywhere a
homogeneity-detecting neuron fires a spike, any response from orientation-

selective cells is suppressed.

3.4 The variance threshold

In the scope of this model, homogeneity is defined as low gray-value vari-
ance (see section 1.4.2). However, in contrast to the rate code model, where
variance is explicitely calculated, the variance threshold in the spike-based
model cannot easily be described in analytical terms. Thus, we take an
empirical approach to investigating the variance threshold (see figure 3.4):
stimulus images with increasing levels of gray-value variance, measured
in terms of grey-value standard deviation o4y, are created by adding
Gaussian noise to an homogeneous patch of 5 x 5 pixels. Here, the variance
threshold lies in the range between 0,4y, 0f 42.3 and 59.6.

Ug'rayval:O Ugrayval:42-3
T 55 f
Z 60k Z 0L
% -65 % -65
o o
=70 -
+ ! ! M-+, L
0 10 20 30 40 0 10 20 30 40
time [ms] time [ms]
O-grayval:59-6 Ugrayval:78-8
B e (B e
Z 60k Z 60k
% -65 % 65
o o
-70 -70
171 111 e el
0 10 20 30 40 0 10 20 30 40
time [ms] time [ms]

Figure 3.4: Response to increasing levels of gray-value variance. Stim-
ulus images with different levels of gray-value standard deviation 0grqyuval
and the homogeneity-detector's membrane potential trace. Dashed line:
threshold (-55 mV). Stimulus is presented at t=0. Crosses at the bottom
indicate LGN K cell spikes. Stars at the top indicate detector spikes.
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3.5 Brightness dependency

The pulse-packet width o, does not only depend on the gray-value variance
in the stimulus image, but also on its average gray-level.

Activation of LGN K cells by retinal ganglion cells is modeled as current
input (see section 3.3.2). The function for translating gray-value into current
is linear (see eq. (3.1)). Thus, the gray-values of an image patch will result in
current values in a fixed interval, even if the brightness of the image patch is
shifted down (i.e. an offset is subtracted from the gray-values, making the
image patch darker).

However, the relationship between current stimulation and spike la-
tency is not strictly linear, but decays in an inverse logarithmic manner (see
figure 2.1) and eq. (2.11). In consequence, a fixed current interval will result
in a larger spike time interval, or pulse packet width, when an offset is sub-
tracted. Thus, a given image patch will result in a larger spike-time interval
when its brightness is shifted down.

Figure 3.5 sketches the principle: A bright image patch results in current
values in an interval of 50 pA, from 600 to 650 pA, which yield spike times
between approx. 9 and 10 ms, i.e. a pulse packet width of 1 ms.

Another image patch with a similar degree of grey-level variance, but
lower average grey-value (i.e. lower brightness), also results in a current in-
terval of 50 ms, however between 450 and 500 pA. The width of the resulting
pulse packet is 4 ms, which is considerably larger.

Figure 3.5: Brightness depen- tspike(l) ——
dency: Sketch of principle. |
Solid curve: Spike latency (ordi-
nate) for current stimulation (ab-
scissa).  An (imaginary) bright
patch yields currents between 600
and 650 pA, a dark one between
450 and 500 pA. Dashed lines
symbolize translation of current
to spike latency. Resulting pulse 50pA 50pA
packet widths are shown near the ° 250 500 550 600 650
ordinate. More details see text. dark patch  jnput current [pa]  bright patch

4 ms

=
(5]

Spike Latency [ms]

=
o

7¢1ms

Thus, the pulse-packet width o, depends on the brightness, or average
gray-value (fgrayval), Of the stimulus image. In consequence, the variance
threshold for the homogeneity-detector depends on the stimulus” average
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gray-value. This means that dark homogeneous areas cannot be detected
with the same reliability as bright ones, in the sense that the detector will be
more sensitive to bright homogeneous areas.

To overcome this limitation, I use two detector units working in paral-
lel: One “on”-detector with the default characteristics, more sensitive bright
homogeneous areas, and one “off”’-detector with inverted characteristics, to
detect dark homogeneous areas. In fact, the implementation of both detec-
tor types is the same, but the off-detector’s stimulus image is inverted, using
the formula

Wosr = Winae = Won ,

where W, is the pixel gray-value in the stimulus image for the off-detector,
W, the gray-value of the original pixel and W,,,,, the maximal gray-value.
Figure 3.6 shows the complementary behavior of the parallel on- and
off-detectors: Two stimulus images with similar gray-level variance o y,qyva
but different average gray-value 1iyqy0q are presented to the on- and off-
detectors. The on-detector responds to the brighter stimulus image, but
does not respond to the darker one, because the resulting pulse packet from
the darker image is too wide. The off-detector shows complementary be-

haviour: The pulse packet resulting from the brighter stimulus fails to evoke

Stimulus On-detector response Off-detector response
Ugrayval:47-6v B I e S N
Mgrayval:187-2 g 60 | % 60 -

N % 65 % -65 4/\’\

I o o
-70
I B
0 10 20 30 40
time [ms]
Ugrayval:44-71 B R ST
,ugrayval:74-4 % 60 g 60 F
& -65 I 5 65
o o
-70
-,
0 10 20 30 40 0 10 20 30 40
time [ms] time [ms]

Figure 3.6: Brightness dependency: on- and off-detector. Left: Stimu-
lus images. Both images have approximately the same amount of gray-level
variance, but differ in brightness (top: bright, bottom: dark). Middle: On-
detector PSP in response to the stimulus images. Lines and points have the
same meaning as in figure 3.4. Right: Off-detector response.
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3.5 Brightness dependency 3. THE MODEL

a spike in the detector, while the darker stimulus yields a focused pulse
packet and triggers an action potential.

Thus, the stimulus image is analyzed in parallel by on- and off-
detectors, where on-detectors respond to bright homogeneous stimuli, and
off-detectors respond to dark homogeneous stimuli. The responses of both
detectors are combined in the way the logical OR operation would do: If
one or both on- and off-detectors has produced a spike, the stimulus inside
the receptive field is considered as homogeneous. If none of both detectors
responds, the stimulus is considered inhomogeneous.

By combining the responses from on- and off-detectors, brightness de-
pendency is reduced, because bright homogeneous stimuli can be detected
as well as dark ones. In section 4.1.1, I show the results from parallel on-

and off-detectors “in practice”, i.e. when analyzing natural images.
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Part 4: Results

In this section, I demonstrate how the model performs with natural im-
ages as stimuli. First, I give an overview how the stimuli are applied to
the model, and how to interpret the resulting images (section 4.1). Then I
present the results for interaction with edge-detectors (section 4.2).

The process of emulating large receptive fields has quite an impact on
the result. This is elucidated in section 4.3. Finally, I examine the effect
of changing the receptive field size of the homogeneity-detecting neuron,
i.e. changing the number of K-cells that project to one coincidence-detecting

neuron.

4.1 Analyzing natural images

In order to cover the whole stimulus image, the network is extended, such
that at every image point there are two homogeneity-detecting neurons, one
on- and one off-detector, each with a receptive field of 5x5 pixels. If the
gray-value variance of the stimulus inside their receptive fields is low, one
or both of the on- and off-detector neurons will produce a spike, indicating
that their receptive fields are inside a homogeneous image area.

Homogeneity-detector neurons are arranged in a retinotopic manner.
Thus, by displaying the spikes produced by homogeneity-detector neurons
in the same topography, we obtain a homogeneity map of the input image: a
spike at a given image position indicates that the image area in the recep-
tive field of the respective homogeneity-detector neuron is homogeneous.
Figure 4.1 (next page) sketches how the homogeneity map is obtained from
an image: The original retinal stimulus image is first processed to account
for large receptive fields of retinal ganglion cells. The resulting input to
the LGN is then processed by the homogeneity-detecting network, and the
homogeneity map is obtained.
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large
receptive

fields r. X

homogeneity map

[

retinal image

LGN input ) )
Konio—cells homogeneity
in LGN  detectors in V1

Figure 4.1: Obtaining the homogeneity map. Gray pixels in the re-
sulting spike map mean that the homogeneity-detector unit at this image
location has produced a spike, while a black pixel indicates that no spike
was produced.

4.1.1 Complementary results from on- and off-detectors

As stated in section 3.5, the results from on- and off-detectors are comple-
mentary. Figure 4.2 shows, how on-detectors respond in bright homoge-
neous areas where off-detectors fail, and vice versa. Certainly, in rare cases
where gray-level inside the receptive field is around the mean gray value
(“halfway” between black and white), both detectors respond. The “thresh-
old” operation applied in retinal processing however, renders this case very

unlikely.

retinal image On-output Off-output

Figure 4.2: Complementary results from On- and Off-detectors.
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4.2 Interaction with edge-detectors

Spikes from orientation-selective cells (or edge-detectors), which are also
retinotopically arranged, give an edge-map of the image. Figure 4.3 il-
lustrates the mechanism: homogeneity-detecting cells inhibit the relay of
responses from orientation-selective cells in homogeneous image regions,

yielding a clearer edge-map.

homogeneity
detection homogeneity
detector
'response

edge\\

detection

inhibition

retinal image HLGEE :
g edge detector clearer
response edge map

Figure 4.3: Inhibition of edge-responses by homogeneity responses:
Principle. Gray pixels indicate spikes in the homogeneity-detector response.
In edge-detector responses, spikes are represented by white pixels.

Figure 4.4 shows the result for the entire image: responses to spurious
edges in homogeneous image areas are suppressed while salient edges per-

sist. Figure 4.5 (next page) shows results for another stimulus image.

Edge map homogeneity map clearer edge map

Figure 4.4: Inhibition of edge-responses by homogeneity-responses:
Whole image. Inhibition of relay of edge-detector spikes is symbolized by
the minus sign.
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tinal i
retinal image big receptive fields
edge homogeneity

detection detection

edge map homogeneity map

Inhibition

cleared-up edge map

Figure 4.5: Another example.
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4.3 Effect of large retinal receptive fields

The retinal processing stage mimicking large receptive fields (see section
3.3.1) has great impact on the quality of homogeneity detection, yet the
effect becomes visible preferably in noisy images. Figure 4.6 shows two
examples: In high-contrast images with clear object contours, such as the
robot head, there is no qualitative difference. However, in the “Elephant”-
image below, we see a clear difference in the spatial pattern of homogeneity-
detector spikes. With retinal processing, the detected homogeneous regions
are much more coherent. This gets clear when looking at the process itself,
which effectively reduces noise and facilitates the distinction between edges

and homogeneous areas.

original without retinal preprocessing with retinal preprocessing

Figure 4.6: Effect of retinal preprocessing. In the above image (robot
head), there's no qualitative difference. The reduction of spurious surface
responses in noisy areas in the “elephant”-image is more striking.
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Figure 4.7 illustrates what is going on in the retina. Retinal preprocessing
is implemented in a two-step procedure: First, the image is convolved with
a Gaussian. This low-pass filtering supresses high-frequency clutter in the
image. The subsequent pointwise application of a sigmoid transfer function

enhances contrast.

A: noisy contrast edge

>|< p— o p—

original Gaussian low-pass sigmoidal result

kernel image function
B: homogeneity

x [\ = . _

Figure 4.7: Retinal preprocessing: principle. A: noisy contrast edge
stimulus. The stimulus image is convolved with a Gaussian kernel, which
yields a low-pass filtered image, to which a sigmoidal (or threshold) function
is applied pointwise. B: same procedure with noisy homogeneous stimulus.

Without the application of the sigmoid, this would lead to a more homo-
geneous image patch, however if contrast is enhanced, the edge-character
is emphasized. The benefit of this is that either “edgy-ness” or homogene-
ity of image areas are enhanced, making a clear separation between the two
cases easier. For an example what the result of retinal preprocessing looks
like for whole images, please refer to the two leftmost images in figure 4.1,

page 36 and the upper two images in figure 4.5, page 38.

In the example above, the stimulus has an average gray-value very close
to the “mean gray”, i.e. a gray-level of 50% (in the middle between black
and white on the luminance scale). As figure 4.8 on the next page shows, the
effect of the two-step “preprocessing” is even more pronounced when the
stimulus has a mean gray-value well above or below the mean gray, since
the threshold operation (application of a sigmoidal function) will “push”
the stimulus gray-values versus black if the stimulus is darker than 50%
gray, or versus white in the other case. In consequence, not only the stimu-

s

lus” “edgy-ness” or homogeneity are emphasized, but also its “darkness” or

“brightness”, accommodating the parallel on- and off-detector architecture.
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A: Dark noisy homogeneous patch

low-pass threshold
B: Bright noisy homogeneous patch
c . — —
low-pass threshold

Figure 4.8: Retinal preprocessing: dark and bright homogeneous
stimuli. A: dark stimulus, B: bright stimulus. For both stimuli, the gray val-
ues are equalized to their average by the low-pass step. The threshold-step
then “pushes” the stimulus versus the bright respective dark extreme.

4.4 Homogeneity-detector receptive field size

In contrast to the previous section, which deals with the effect of large re-
ceptive fields in the retina, this section deals with receptive field size for the
homogeneity-detecting neuron, i.e. how many LGN K cells project to one
homogeneity-detecting cell.

However, at least in images with high contrast and low amounts of high-
frequency clutter, increasing the receptive field size of the homogeneity-
detector neuron yields qualitatively the same results as retinal preprocess-
ing, as figure 4.9 illustrates.

Instead of low-pass filtering and contrast-enhancing the image, the orig-
inal (retinal) image is not modified, but the number of K cells projecting to

one homogeneity-detector neuron is increased.

without retinal preprocessing:

result with retinal RF size

original preprocessing 5Xx5 7

Figure 4.9: Effect of homogeneity-detector receptive field size. “RF”
is abbreviated for “receptive field”.
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Part 5: Discussion

5.1 Comparison with the rate code model

Figure 5.1 shows results from homogeneity detection by the spike-based
model and the rate code model. The results are qualitatively the same, in the
sense that the same regions have been recognized as homogeneous. Note
that the rate code model has a graded distinction between homogeneous
and non-homogeneous regions, while in the spike-based model, it’s “all or

nothing”, i.e. spike or no spike.

11 — L]
spike—based model rate—code model
Figure 5.1: Comparison of results from rate code model and spike-

based model. Homogeneous areas obtained from the spike based model
(left) and from the rate code model (right).
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By using spiking neurons, the spike-based model is biologically more
realistic. Moreover, unlike other mechanisms to reduce spurious edges (see
section 1.4.1), the mechanism is purely feed-forward and uses only one
spike per neuron (except between retina and LGN). Thus, it fulfills the re-
quirements for rapid processing postulated by Thorpe et al. (1996).

5.1.1 Parameter stability

It must be emphasized that the model yields remarkably stable results. Un-
less otherwise noted, all results presented have been achieved with the same
parameter set for neurons and receptive fields; only the total number of neu-
rons is adjusted according to the size of the stimulus image (in pixels). Re-
garding the different resolutions and scales of the images (see appendix D),

this argues in favor of the model’s robustness.

5.2 Biological context

5.2.1 Homogeneity detection in the Cortex

In the hypothesis (see section 3.1), it is assumed that the homogeneity de-
tection is performed in the K-Path. In the first place, it is not clear if ho-
mogeneity detection is actually happening in the cortex. However, looking
at the properties of cells in the K-pathway let this hypothesis appear more
plausible.

o K-cells have large receptive fields, often with no antagonistic sur-
round. In consequence, they should not selectively respond to ori-
ented contrast edges, or contrast stimuli at all, but rather to diffuse

illumination.

e Cells in the K-pathway are phylogenetically very old. Homogeneity
detection could be a basic kind of vision; it does not convey detailed
information about the visible environment, but it gives information
of the type “there is something”. In this context it is also interesting to
note that K-cell receptive fields are evenly distributed across the retina
(except in the fovea), which also supports the rudimentary character

of “homogeneity vision”.
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e Homogeneity detection and edge detection (achieved by the phylo-
genetically younger M- and P-pathways) are complementary mecha-
nisms; They can enhance each other in a parallel, feed-forward way in
order to yield a more robust percept of the outside world.

The hypothesis has also some caveats which remain to be investigated. First
of all, as I pointed out in the introduction to this work, konio-cells in the
LGN are a very inhomogeneous group of cells. It may, thus, be inappro-
priate to generalise them to the K-Path, implying that cells in this path are
functionally similar. Some might be involved in homogeneity detection,
some might have other roles.

Moreover, it is commonly assumed that small bistratified ganglion cells
respond to color changes in the medium to short wavelength range (yellow -
blue), and hardly to pure luminace changes (black - white) (Rodieck, 1998).
These cells provide the input to the middle two K cell layers in the LGN,
which in turn project to the blobs in layer 2/3 in V1, thus being a part of
the putative biological realization of the model. Color information is not
included in the model; all stimulus images are gray-scale, in disregard of
the ganglion cells’ color-selectivity.

Thus, introducing color in the model will be necessary in future studies.
As I also explain below (section 5.3), introducing color may yield interesting
results, in particular to the benefit of object segmentation.

Another possibility is that the actual homogeneity detection does al-
ready take place in the LGN instead of layer 2/3 of V1. Since retinal gan-
glion cells are able to produce synchronized spikes, especially if they have
overlapping receptive fields or share common input (Greschner et al., 2002),
the model would also work if we exchanged the LGN cells with ganglion
cells; cells in the LGN would then do the actual coincidence detection.

But, homogeneity detection could also be performed in other pathways
than the K-pathway, e.g. by cells in the M-pathway, which are not color-
selective. Their receptive fields are also relatively large and convey visual
information of relatively low spatial resolution. M-cells respond transiently,
which is in favor of the processing concept, since it needs only one spike.
The fact that M-cells have receptive fields with an antagonistic surround
does not necessarily exclude that some also respond to diffuse illumination,
for instance if the effects of the surround and the center of the receptive field
are not exactly balanced.
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Indeed, some recent studies relate rapid object classification to the M-
pathway. Bar (2003) proposes that low spatial frequencies in an image are
projected rapidly from early visual areas to the prefrontal cortex (PFC). This
coarse information is used by the PFC to deduce an “initial guess” about the
input image, triggering corresponding object representations in inferotem-
poral cortex (IT), which are then integrated with more detailed bottom-up
information. In this study, the M-pathway is considered a candidate for the
rapid bottom-up process, since it conveys information about low spatial fre-
quencies early and rapidly. However, it is not discussed if the K-pathway
could be a part of the rapid bottom-up process, in spite of its suitable func-
tional and physiological properties, such as its low spatial resolution and
direct connections from the LGN to higher brain areas.

Also Delorme et al. (1999) relate ultra-rapid categorization to the magno-
cellular pathway. In this work, too, a contribution by the K-pathway is not
discussed. However, these studies do not consider homogeneity detection,

either.

5.2.2 Accuracy of spike timing

In the model, the accuracy of spike timing in response to the stimulus is
very high. LGN spike timing depends only on the intensity (or gray-value)
of the stimulus pixel, with no stochastic component. For real neurons, this is
not given, since there is always some stochastic aberration in spike timing,
be it by fluctuations of the membrane potential, or by intrinsic imprecisions
in the spiking mechanism.

The spike latency code used in the model can only be realized in real neu-
rons, if they can produce their action potentials with a sufficient degree of
temporal accuracy. This question has been actively debated over the years.
Experimental results show that neurons can indeed produce spikes with
an accuracy of about 1 ms (Tanaka, 1983; Mainen & Sejnowski, 1995; Reid
& Alonso, 1995; Stevens & Zador, 1998; Reinagel & Reid, 2002). However,
there is also evidence that, at least in some neurons, the incoming spike
rate rather than the exact timing of those spikes determines the neuron’s
response (Shadlen & Newsome, 1994; Shadlen & Movshon, 1999). But, as
Usrey (2002) points out, precise spike timing plays an important role in
thalamo-cortical processing, so we have to assume that neurons in this brain
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areas actually are capable of responding with a high degree of temporal ac-

curacy, which is in favor of the model presented here.

Another caveat is the synchronization of LGN K cells to stimulus onset.
That is, some mechanism is required to synchronize the reference point in

time for spike latency of the K cells.

The experiments by Fabre-Thorpe et al. (2001) used flashed images. Here,
synchronization is achieved by the stimulus, especially if a noise mask pre-
cedes stimulus presentation. If the subject faces a plain screen before stim-
ulus onset, homogeneity-detectors respond to the whole screen. If now an
image is flashed on the screen, K cell responses get desynchronized in non-
homogeneous regions, and homogeneity-detectors with receptive fields in

these regions stop firing.

The situation changes in freely-looking individuals, since the retinal im-
age of the outside world seems to change in a continuous manner. However,
the process of looking is intersected by saccadic eye movements, or saccades.
During the quick movement of a saccade, vision is effectively inactivated
(Rodieck, 1998). This is consistent with recent experimental data showing
that, in behaving macaque monkeys, neuronal response in V1 is reduced
during saccades (Slovin et al., 2002). The mechanism behind this effect is
not clear; it could be due to some kind of trigger signal, which actively at-
tenuates neuronal response, or simply to the very fast motion of the retinal
image (approx. 800°/s) during a saccade, which typically takes some tens
of milliseconds, depending on its magnitude. In any case, this effect could
provide the “reset”-signal for the K cells.

In addition, Greschner et al. (2002) demonstrate how fixational eye
movements (microsaccades) effectively synchronize ganglion cell responses.
Here, synchronization of neuronal response is not linked to the onset of fix-

ation, but throughout the entire intersaccadic interval.

A very intensely discussed mechanism for response synchronization are
stimulus-evoked oscillations of neuronal activity. Rodemann (2003, chapter
8) shows a mechanism related to the one presented in this work, using an

oscillatory signal for neuronal synchronization.
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5.3 Benefits of homogeneity detection

It is widely assumed that mostly contour information counts in cortical pro-
cessing of visual input in primates and most mammals in general. Homoge-
neous regions are thought not to play a big role. There are certainly reasons
for this assumption, such as the fact that many of the cells found by phys-
iologists in primate visual cortex actually do not respond to diffuse illumi-
nation of their receptive field, but require at least some kind of contrast.
Moreover, for most cells the stimulus is required to move in order to elicit
a response. However, in temporary disregard of these findings, I want to
point out some benefits which can be drawn from information about homo-
geneous regions in the visual field.

I have already stated the first point: Homogeneity and edge detection
are complementary mechanisms, which do not break each other in the first
place. However, not breaking another mechanism is not a merit in itself.
So, let’s look at what can be achieved by the mechanism alone, i.e. without

interaction with edge-detectors.

Segmentation

The term segmentation in the context of visual processing describes the pro-
cess of dividing an image into separate parts, such as objects. It is commonly
assumed that segmentation is necessary to achieve robust object recognition
(see Ullman, 1995). A low-pass filtered image with enhanced contrast, as
resulting from large retinal receptive fields (see section 4.3), facilitates this
process, because much high-frequency information is removed from the im-
age, while coarser contrast information is enhanced.

Additionally, information from homogeneity-detecting cells can sort of
“highlight” large continuous regions. These regions can be considered as a
pre-segmentation of the image, and could then be analyzed in more detail
by cells sensitive to other features.

Especially when considering the direct projections of LGN K cells to
higher visual processing areas in the ventral pathway, this thought becomes
interesting: cells in these areas can be “primed” for stimuli coming through
the other pathways, e.g. by a slight subthreshold depolarisation making
them more sensitive. Thus, the coarse hypothesis about the input, as con-
veyed by K-cells, can be refined by analyzing the input in more detail.
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Moreover, as I already stated above, the model presented here does not
exploit hints from color. As Gegenfurtner & Rieger (2000) state, color cues
might be of great use for object segmentation. Thus, it may be valuable to

include some kind of color representation in future studies.

5.4 OQutlook

5.4.1 Psychophysics to test the hypothesis

Having postulated a model for homogeneity detection in primate visual cor-
tex, it is desirable to test the hypothesis.

A psychophysical study based on the object classification experiments
by Fabre-Thorpe et al. (2001) would be suitable to test whether homoge-
neous image regions do at all play a role in rapid object classification. One
could remove low-pass information from stimulus images, for instance by
replacing homogeneous regions with a texture or random pixel noise and
see whether the performance in rapid object classification decreases.

Further, by using S-cone isolating as well as L/M-cone isolating stimuli
(i.e. stimuli, to which only cells receiving S- resp. L/M-cone input respond
differentially) would allow to test whether cells in the K-pathway, which
are mainly S-cone driven, play an important role in rapid object classifica-
tion. Maybe it is possible to construct stimuli, in which contrast edges are
invisible to cells in the K-pathway, and test rapid object classification with
these stimuli. The model postulates that in this case fast object classification
would be impaired, since the K-pathway would signal a completely homo-
geneous image.

An even more tricky approach implies making homogenous regions in-
visible to the K-pathway, such that it can not detect homogeneous regions.
Also here, rapid object classification would be impaired, if the model is cor-
rect.

5.4.2 Other uses for the processing concept
Coding and learning in cortical networks

The fast feed-forward, one-spike based processing concept used in this
work could also be transfered to other tasks than the detection of homo-
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geneous image areas, for instance to detect regular patterns (textures). A
simple texture, consisting of parallel oriented lines, could be detected with
orientation-selective cells projecting to a coincidence-detecting neuron. The
preferred orientation of the orientation-selective cells should be similar, and
their spike-timing would have to depend on contrast and orientation of the
stimulus. When a regular texture of parallel identical lines is presented, the
orientation-selective cells would produce a focused pulse packet, causing
the coincidence-detecting neuron to produce an action potential.

Generally, by choosing appropriate receptive field characteristics, any
kind of regular pattern can be detected with this processing concept. The
only requirement is the correct “wiring”, i.e. the respective feature-detecting
cells must project correctly on an coincidence-detecting neuron, which rep-
resents the stimulus. Admittedly, the thought of having specialized cells for
every kind of pattern is unrealistic regarding the finite number of cells in
the brain and the infinite number of possible stimuli. But, given the highly
divergent/convergent architecture of synfire chains, it is reasonable to as-
sume that in such an architecture almost every feature can be represented.
This is related to the concept of liquid computing: given a complex network,
any feature in the input can be detected by a read-out cell connected to the
“right” neurons (cf. Maas et al., 2002; Jaeger, 2001).

Also when considering learning in neural networks, in the sense of
changing synaptic weights to represent a given feature, coincident spikes
will provide a strong learning signal. A suitable learning rule would
strengthen those synapses through which an action potential arrived in
temporal coincidence with other action potentials. The amount of poten-
tiation depends on the number of coincident spikes. Now imagine a two-
layered network of spiking neurons receiving visual input: the first layer
contains various types of feature detectors, i.e. orientation-selective cells,
color-contrast cells, but also cells with homogeneous receptive fields. Spike-
timing of these neurons depends on how good the stimulus matches the op-
timal stimulus, i.e. preferred orientation. The spike timing neurons weakly
connect in a highly divergent manner to a layer of coincidence-detecting
neurons. A given stimulus, presented to the network, will elicit a charac-
teristic pattern of spikes, some of which will be coincident. Given that the
projections are divergent enough, neurons in the coincidence-sensitive layer

will develop selectivity for this stimulus. So, a spike-latency based network
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for object recognition may emerge. It remains to be investigated how stable
this learning process can be, and how good it performs in comparison with

other established learning rules.
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Part 6: Appendix

A Implementation of the rate code model

The rate code model is described in detail by Gewaltig et al. (2002). For

reference, I reprint relevant details here.

A.1 Retinal input

The receptive field (or retinal input) of LGN K cells (large, often no antag-
onistic surround) is modeled by a two-dimensional gaussian h(z,y) with

standard deviation o:

ha,y) = —— exp (—‘”y) (1)

o1V 2T 403

The firing rate I’ of an LGN K cell at position (z,y) is given by F[z,y] =
©; (B]z,y]) with the sigmoid activation function

1
12 = 1o (—2by (2 — 61))

(2)

and B[z,y] = (A x h) (z,y) with threshold ¢, and slope b;. The threshold is
determined by the mean activity in the image. A is the input image.

Please note, that in the spike-based model, there is an important differ-
ence in the assignment of the model stages to cells: In the rate code model,
the application of a sigmoidal function accounts for LGN K-cell activation.
However, in the spike-based model, the LGN K-cells are modeled by inte-
grate and fire neurons. The sigmoid activation function there models the
activation of retinal ganglion cells. The formula for preprocessing input im-

ages however stays the same.
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A.2 Rate code homogeneity-detectors

The K-cell layer C' projects to a layer of homogeneity-detectors E. The re-
ceptive field of a homogeneity-detector at position (z,y) is modeled by a
circular patch v(z,y) within C. Homogeneity-detectors effectively evaluate
the variance of color or gray-level in their circular receptive field.

1 ) . 2
Dlx,y] := J P > (Climm.j—n]=(C)yuy) (3)
(m,n)ev(z,y)
with .
(o) = 2 >, Clm—zn—yl @)
(m,n)ev(z,y)

The activation of the homogeneity-detectors is given by FElz,y] =
O3 (D]x,y]), where ©4(+) is a sigmoid activation function equivalent to (2).
The threshold 6, is again chosen according to the mean activity of their in-
put.

B Simulation environment

B.1 NEST - NEural Simulation Toolbox

All simulations were carried out using the NEST-simulator (Diesmann &
Gewaltig, 2002). Available for many computer platforms, it is designed for
parallel computer architectures, but also runs on single processor machines.
The simulator can handle very large neuron populations. In this work, sim-
ulations have up to 1,8 million neurons, depending on the image size. Sim-
ulating 55 ms (550 steps with a resolution of 0.1 ms) with this network took

about 14 minutes on an 8-processor SunFire V880.

B.2 Neuron model implementation

The Lapicque model described above is implemented in NEST using the
method for exact digital simulation presented by Rotter & Diesmann (1999).
The implementation itself is documented in Mohns (2000, p. 91f. ).
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B.3 Adjustable parameters

The implementation of the neuron model in NEST (therein called
iaf _neuron ) lets the user adjust most of the parameters present in the
equations describing the neuron. One parameter which can only be modi-
tied indirectly is R, the membrane resistance. Since R-C' = 7 (see eq. (2.3)),
one can adjust either 7 or C' in order to change R.

The parameters and their default values are shown in table 1.

| Parameter name | Default | Description

uo -70 mV | resting membrane potential V) in mV
Theta -55 mV | threshold 6 in mV

C 250 pF | membrane capacitance C' in pF

Tau 10 ms | membrane time constant 7 in ms

TauSyn 2 ms | time constant of synaptic current 7y, in ms
TauR 2 ms | refractory period tr in ms

Table 1: Adjustable parameters of the iaf _neuron model in NEST.

C Parameters of the spike-based model

C.1 Parameter search for coincidence detection

To achieve sufficient separation of the homogeneous and non-homogeneous
case, some parameters of the detector neuron have to be adjusted. With its
default parameters (see Appendix B.3), the detector responds even to very
wide pulse packets.

As explained in section 2.2.3, I use Ty, the time-constant of the post-
synaptic current in response to a spike to adjust the “homogeneity thresh-
old” of the detector neuron.

According to eq. (2.13), for smaller values of 7,,, less total charge is de-
livered to the neuron, which in turn leads to a smaller PSP amplitude. In
order to yield the same PSP amplitude, the current amplitude must be ad-
justed. In the simulation, this was achieved by adjusting C, the capacity of
the membrane. The NEST simulation program keeps 7, which is defined as
the product - C, at its assigned value, which can be adjusted separately. In
consequence, when changing C, effectively R, the membrane resistance, is

changed too.
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Smaller values of C' result in greater values of R. In turn, higher mem-
brane resistance results in a higher resulting membrane potential for a fixed
current I, according I = 2.

One could also have changed the weight of the synaptic connection, but
this parameter is used for adjusting the maximum PSP amplitude when
changing the receptive field size (i.e. the number of LGN K cells project-
ing to one homogeneity-detecting cell), which leads to a change in ngpikes,

the number of incoming spikes.

C.2 Neuron parameters in the simulation

Most neuron parameters were left at their default values (see table 1). Table

2 lists the adjusted parameters, and a description why they are changed.

| Parameter name | Default | Description |

TauR 200 ms | Larger than simulation time to allow only
one spike per neuron.

TauSyn 0.63 ms | Adjusting the coincidence threshold

C 0.75 pF | Counteracting response diminuition by
lower gy,

Table 2: Adjusted parameters.

D Used images

The images were either pulled off the internet or stem from the COIL-
database (Nayar et al., 1996). All images were converted to grayscale with
gray values between 0 and 255 using a graphics processor (The Gimp).

In all figures, all images were scaled for convenience. Figure 1 shows all

images in correct relative sizes. Real sizes (in pixels) are listed in table D.

| Picture | size [px] |
Elephant 266 x 419
Black forest mountain hotel | 409 x 297
Robot head 196 x 196
Toy cat 128 x 128
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Figure 1: Relative sizes of the pictures used in the simulations.

E Some words on modeling

Making things simpler

In the IAF-neuron model, as in every scientific model, some intricate details
of the modeled system have been discarded, others have been simplified.
For example, the IAF-neuron is a point-shaped neuron model, i.e. it has no
spatial extent. This implies that e.g. nonlinearities in dendritic integration
are ignored. The capacity C' and resistance R are assumed constant, as well
as the threshold for producing an action potential and the subsequent refrac-
tory period. Also, the spikes produced by the IAF-neuron are unstructured,
thus it cannot produce bursts of action potentials as some real neurons do.
These simplifications, on the one hand, make the neuron model behave
less realistic. On the other hand, computational complexity is reduced sig-
nificantly, allowing for larger simulation scenarios or simulating on less
powerful, and therefore cheaper, hardware. Here, as always in modeling,
a compromise has to be made between accuracy and simplicity of the model.
Highest possible accuracy is not always desired, as it increases computation
time. In addition, sometimes the more accurate model yields details which
lie outside the study’s scope, and do not contribute to a deeper understand-
ing of the problem—rather is it possible that too many details make it harder
to see the effects one wants to investigate. A more simplistic model may be

easier to handle, and produce results of sufficient accuracy, if it has been
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well designed and the relevant properties of the system under investigation

have not been “simplified away”.

Other neuron models

Of course, the IAF-neuron is not the only neuron model out there. Simpler
models for example do not use spikes but rather operate on a rate code. One
of the simplest neurons, the perceptron, may not have much in common with
a real neuron, and may not even have been designed as such in the the first
place. Nevertheless, a lot of sensible computation can be done with it, and
it is employed in neuroscience, for instance in McClelland & Rogers (2003).
The advantage clearly is that a single neuronal unit does not require much
computation power, and interactions such as learning are relatively simple
to implement. Therefore it is relatively easy to build complex networks.
More complex model neurons include so-called compartment models.
Here, the complete neuron including the dendrites is modeled by splitting
it into compartments. Compartment models actually can deliver very ac-
curate predictions for the behaviour of real neurons (see e.g. Traub et al.,
1999). But since the complexity of one neuronal unit is very high, network
simulations with compartment neurons can be very time-consuming. More-
over, compared to the IAF-model there are a lot more neuron parameters for
which a realistic or functional correct setting has to be found, requiring even

more time.

Why the Lapicque neuron is good enough for the present work

Generally one may argue that the Lapicque model underestimates,
rather than overestimates, the computational capabilities of its biological
archetype. The simulation in this work exploits the coincidence detection
properties of a neuron. Since this is already present in the IAF-model, there
is no need for a more complicated model. However, further studies might
require more realistic models, e.g. if dendritic structure shall be included in

the network architecture, or if the network shall be susceptible to learning.
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