
Analysis of Coding Principles
in the Olfactory System and

their Application in
Cheminformatics

Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften

Vorgelegt beim Fachbereich 14 Biochemie, Chemie und Pharmazie

der Johann Wolfgang Goethe–Universität

in Frankfurt am Main

von

Michael Schmuker

aus Biberach an der Riß

Frankfurt 2007



vom Fachbereich 14 Biochemie, Chemie und Pharmazie der der Johann Wolf-

gang Goethe–Universität als Dissertation angenommen.

Dekan: Prof. Dr. Harald Schwalbe

Gutachter: Prof. Dr. Gisbert Schneider, Prof. Dr. Paul Wrede

Datum der Disputation: noch nicht bekannt



Erklärung
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“All models are wrong, but some models are useful.”

– George E. P. Box (1979)
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Chapter 1

Introduction

When it comes to the analysis of sensory information, our own senses are still

unmatched by most computational implementations. Moreover, it has turned

out that engineers found similar solutions for efficient encoding of stimuli as

they appear to be built into our brains.

For example, the wavelet-like encoding of visual information by the retina

and subsequent visual processing areas, which has its counterpart in various

image compression algorithms (Mallat, 1989). Another example is compres-

sion of audio information: The basilar membrane in the cochlea (the inner ear)

is excited by different stimulus frequencies at different places, where similar

frequencies excite nearby parts of the membrane. This phenomenon is called

tonotopy, because of the topological projection of tones of different frequency

(Nicholls et al., 2001). Hair cells in different parts of the basilar membrane thus

respond to different audio frequencies, effectively providing a frequency de-

composition of the original signal. Notably, analyses of the basilar membrane’s

coding characteristics have led to improvements in audio coding (Baumgarte,

2002).

The olfactory sense provides our perception of the chemical world. Through

the course of evolution, its mechanisms to deal with complex chemical stimuli

are likely to have evolved to cope optimally with this task. The analysis of
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Figure 1.1: Overview of the architecture of olfactory systems
(simplified, after Firestein (2001)).

this system promises to yield insight into efficient algorithms to encode and

process chemical data, a task that is at the heart of cheminformatics.

1.1 Anatomy of the olfactory system

In order to understand the function of the olfactory system, it is essential to

know its anatomy. This section can only serve as a “crash course” to olfaction,

providing just enough information which is necessary in order to understand

the scientific work we present here. More specific information is available in

the original publications cited below.

One striking aspect of olfactory systems is its similar organization in a wide

range of species (Hildebrand and Shepherd, 1997; Firestein, 2001). For exam-

ple, the basic architecture is very similar in insects and in mammals. Figure 1.1

depicts this architecture.

The input is formed by the entirety of odorants (“chemical space” in Fig-

ure 1.1). Olfactory receptor neurons (ORNs) encode odorants to neural sig-

nals, forming the first stage of olfactory perception. The number of functional

genes for olfactory receptors (ORs) has been estimated to about 60 in Drosophila

(Vosshall, 2000), about 350 in humans (Glusman et al., 2001; Zozulya et al.,
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2001), about 1000 in mice (Zhang and Firestein, 2002) and about 1200 in dogs

(Olender et al., 2004). In either species, each ORN carries mostly one genotype

of OR (depicted by neurons of different color in Figure 1.1), although excep-

tions to this rule exist (Mombaerts, 2004; Goldman et al., 2005). The regulation

of this expression profile has recently been described in mice by Lomvardas

et al. (2006).

The second stage in olfactory perception is embodied by the antennal lobe

(in insects) resp. the olfactory bulb (in vertebrates). Axons of olfactory receptor

neurons project onto so-called glomeruli in this structure. These glomeruli are

sites of high synaptic connectivity between ORN axons and secondary neurons

that project to higher processing areas. These secondary neurons are called

“mitral cells” in mammals, and “projection neurons” in insects.

The pronounced connections between the secondary neurons via inhibitory

interneurons inspired various hypotheses on the computational properties of

this structure (see Cleland and Linster (2005) for a review). They have in com-

mon that it is involved in some form of decorrelation of the input.

Notably, a chemotopic arrangement of the glomeruli has been observed in

vertebrates (Friedrich and Korsching, 1997; Uchida et al., 2000; Meister and

Bonhoeffer, 2001) and insects (Sachse et al., 1999; Couto et al., 2005), in that

similar odorants often activate neighboring glomeruli.

The axons of the secondary neurons finally project into the piriform cortex

in mammals, and the mushroom body in insects. In both, these areas integrate

inputs from a variety of sensory modalities (Heisenberg, 1998; Roesch et al.,

2007), forming the ideal substrate for associative perception of scent.

1.2 Scope of this thesis

The conserved architecture of olfactory systems may indicate an optimum for

processing chemical information. Understanding the organization and infor-

mation processing concepts in the olfactory system promises to unveil effective
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ways to encode and process chemical information. In this thesis, we aimed to-

wards a better understanding of this system through modeling parts of the ol-

factory machinery, pursuing a highly interdisciplinary approach that connects

chemistry with neurobiology and machine learning.

Our first goal was to describe the coding properties of ORNs, in terms of

their preferred ligand characteristics. Assuming that activation of olfactory

receptors (and in consequence the activation of ORNs) is the result of ligand-

protein-interactions, it should depend on the molecular features of an odor-

ant, and thus be predictable from the odorant’s chemical structure. Based on

this assumption, we derived Structure-Activity-Relationships for ORNs using

vectorial descriptors of physicochemical molecular properties, and trained Ar-

tificial Neural Networks to predict ORN activation. We evaluated prediction

accuracy through testing a novel set of odorants for ORN activation and com-

paring the results to our predictions. The outcome is presented in chapter 2.

The chemotopic arrangement of glomeruli on the secondary structure in

the olfactory system provides insight in how chemical similarity is defined

in nature. Hence, as a second goal for this thesis we wanted to investigate

chemotopy in the insect antennal lobe. We aimed towards deriving regular

projections of this three-dimensional structures on a regular grid to facilitate a

systematic analysis. Self-Organizing Maps (SOMs) are particularly useful for

this purpose, since they conserve local topology in the input space. In chapter

3, we describe SOMMER, a software that we developed to train and visualize

SOMs with a variety of two- and three-dimensional topologies. Moreover, we

show projections of Drosophila’s antennal lobes onto regular grids of different

topologies, and demonstrate how these regular projections enable new ways

to explore the antennal lobe’s chemotopic organization.

Finally, our last goal was to investigate whether the coding and processing

principles in the olfactory system can be applied to chemical information in

general. To achieve this, we designed a simplified computational model that

incorporates processing schemes which have been observed in the olfactory
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system. This model allowed us to analyze the impact of olfactory processing

strategies on retrospective screening of an odorant database and a collection

of pharmaceutical compounds. The outcome of this analysis in presented in

chapter 4.
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Chapter 2

Functional characterization of

olfactory receptors

2.1 Background

Olfactory Receptors (ORs) encode chemical stimuli in neuronal activity. The

gene family of ORs consists of G-protein coupled receptors (GPCRs) and was

first described for rats (Buck and Axel, 1991). In Drosophila, the organism we

considered in this study, as well as in mammals and vertebrates in general,

each Olfactory Receptor Neuron (ORN) carries one type of OR (Vosshall et al.,

2000), such that the response of each ORN to a chemical substance is mainly

determined by the receptor it expresses (Hallem et al., 2004).

The fact that there is no crystal structure available for any OR hampers

structure-based approaches such as automated molecular docking to examine

ligand binding characteristics. Although attempts have been made to use mod-

els based on homology to rhodopsin (Vaidehi et al., 2002; Floriano et al., 2004;

Hall et al., 2004), these approaches suffered from the cumbersome creation of

such a model and the remaining errors inherent to homology modeling (Becker

et al., 2003; Kairys et al., 2006).
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Araneda et al. (2000) pursued a ligand-based approach to characterize the

rat’s I7 OR. By testing a large number of ligands, they were able to establish

a verbal characterization of preferred I7 ligands in terms of functional group,

carbon chain length and rigidity. However, such an approach only provides

qualitative data for a limited number of odorants. It does not describe ORN

tuning in quantifiable parameters that can be determined for any chemical.

Here we present a method providing an objective way of predicting ORN

responses to arbitrary odorants. We have developed a model that uses a dis-

tinct set of physicochemical parameters to describe the structure of odor mole-

cules and predict their activity at Drosophila receptors.

We followed a classic approach to derive Structure-Activity-Relationships

(SARs) by calculating molecular descriptors and training Artificial Neural Net-

works (ANNs), as it has been applied in other studies to characterize ligand

affinity to specific receptors (Manallack et al., 1994; Schneider and Wrede, 1998;

Winkler and Burden, 2002). Similar approaches were previously applied to

model human psychophysical data, that is, odor and aroma characteristics

(Tsantili-Kakoulidou and Kier, 1992; de Mello Castanho Amboni et al., 2000;

Wailzer et al., 2001; Lavine et al., 2003). However, odor percepts are the result

of a nonlinear transformation of ORN inputs in the brain and do not necessar-

ily reflect OR properties (Sell, 2006). By contrast, we restricted our study to

modeling receptor responses, because these are more likely to be dominated

by physicochemical properties of the odorants, assuming OR activation is the

result of ligand-receptor binding through intermolecular interactions.

In addition, we suggest that quantifying the molecular properties relevant

for activating olfactory receptors reveals how chemical space is encoded by

the receptor repertoire of a specific organism. One may assume that such an

array of ORs has evolved to provide a useful representation of chemical space

through an efficient coding scheme. Determining the actual properties of the

chemical world that are detected by ORs may thus provide an efficient way to

represent molecules in a computational framework in general.
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2.2 Methods and data

2.2.1 Source data: odorants and ORN responses

We used the responses of Drosophila ORNs to 47 odorants that were measured

through electrophysiological in vivo recordings by de Bruyne et al. (2001). These

47 odorants are depicted in Figure 2.1. Their names and the activity values (in

spikes/s) are given in Table 2.1.

We prepared a database containing the molecular structures of each of those

odorants and their activity (in spikes/s) on the neurons of the classes ab1D,

ab2A, ab2B, ab3A, ab3B, ab5B and ab6A. The responses of these classes corre-

spond to those of the OR10a, OR59b, OR85a, OR22a, OR85b, and OR47a recep-

tors respectively (Hallem et al., 2004). No receptor has been identified yet for

ab6A.

We chose these ORNs because interpretation of the response spectrum was

not complicated by high responses to the solvent, and at least four molecules

were active for these ORNs. This yielded a minimum ratio of active to inactive

molecules of roughly 1 to 10, and allowed splitting of the data into a train-

ing and a validation set of the same size, with at least two instances of active

molecules in each set (cf. section 2.2.4 “Neural Network Training”).

2.2.2 Definition of activity ranges

Compound activity was assessed by the magnitude of the neuronal response

to odorant-enriched air, evaluated as the increase in action potential firing rate

during a 500 ms stimulation with a 10-fold dilution of the headspace over the

odorant diluted 1% in paraffin oil as described by de Bruyne et al. (2001). We

transformed the continuous range of activity levels into all-or-none data by

setting a lower and an upper threshold for each ORN. Molecules with activities

below the lower threshold were considered inactive, while those with activities

above the upper threshold were considered active. Active odorants are set in

bold in the respective column in Table 2.1.
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Table 2.1: Activity values (in spikes/s) and per-ORN thresholds. Spike rates set
in bold indicate “active” odorants for the respective ORN. Compounds in brackets
have uncertain activity (i.e. spike rates between the upper and lower threshold).

index substance name ab1D ab2A ab2B ab3A ab3B ab5B ab6A

1 (E)2-hexen-1-ol -3 -3 56 2 16 0 123
2 (E)2-hexenal 1 -1 2 3 (24) 2 85
3 (E)2-hexenyl acetate -3 8 0 114 -11 22 78
4 (E)2-octenal 1 -3 3 (20) 8 3 71
5 (R)-(+)-limonene -2 -7 1 -4 -6 -8 -8
6 1,4-cineole -4 -2 1 -1 3 0 -6
7 1,4-diaminobutane -1 -11 -1 -1 19 (13) 3
8 1-octen-3-ol 0 -3 (14) 49 39 (13) 175
9 1-propanethiol 3 -11 2 5 (22) 7 -1
10 2,3-butanedione 2 102 1 (21) 46 -5 42
11 2-heptanone 0 5 1 33 122 70 48
12 2-isobutyl-3-methoxy-pyrazine 6 -4 -1 -6 2 -4 -3
13 3-(methylthio)-1-propanol 9 -7 4 2 10 152 14
14 3-octanol 2 -2 7 57 112 27 162
15 4-isopropylbenzaldehyde 13 -2 1 -7 16 -1 -14
16 4-methylcyclohexanol 7 0 3 (13) 4 -2 -15
17 4-methylphenol (22) -3 0 -1 (31) 1 -12
18 Acetophenone 157 -8 2 -7 1 1 -15
19 α-pinene -4 -8 0 -3 13 -5 12
20 Ammonia 5 -10 -1 -1 17 5 -10
21 β-citronellol -6 -7 3 -5 12 4 53
22 Benzaldehyde 49 -8 1 -5 3 -1 -13
23 Butanoic acid 1 -2 1 (20) 2 -4 82
24 Butanol 0 13 2 (11) 11 -5 -16
25 Carbon dioxide 0 5 1 4 14 1 10
26 cis-vaccenyl acetate 5 -6 1 (13) -12 -1 -16
27 Cyclohexanone -8 -2 -1 3 -1 -2 -15
28 Dipropyldisulphide 6 -10 -2 2 8 5 4
29 Ethanolamine 0 -9 5 4 9 8 -6
30 Ethyl 2-methylbutanoate 6 14 23 141 -7 2 2
31 Ethyl acetate 4 156 1 (14) 9 8 9
32 Ethyl butanoate 4 (23) 73 145 5 3 -2
33 Ethyl propionate -1 69 (20) 60 -10 8 -12
34 Eugenol methyl ether 11 -1 1 -7 11 -1 -15
35 Geranyl acetate 2 5 0 1 (29) -5 (26)
36 γ-valerolactone 32 -2 23 32 -2 -2 47
37 Hexanol 3 8 67 (20) 87 5 134
38 Indole 4 0 1 -1 10 -3 5
39 Iso-amyl acetate 50 7 9 104 8 45 (24)
40 Iso-amyl alcohol 1 1 4 (14) 6 1 -10
41 Linalool -2 -7 -4 -1 14 -1 (36)
42 Methyl salicylate 187 -2 3 4 3 -3 5
43 Nonanal 1 -5 -1 -4 6 -4 -9
44 Pentyl acetate 5 (23) 2 111 (25) 198 69
45 Phenylacetaldehyde 76 -6 0 -3 12 -5 -19
46 Propanone -3 88 1 1 2 1 (35)
47 Pyrrolidine 2 -5 6 -4 (24) -1 (28)

lower threshold 20 20 10 10 20 10 20
upper threshold 30 30 20 30 35 20 40

number of actives 6 4 6 10 5 6 13
number of inactives 40 41 40 28 36 39 29
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Odorants with an activity value between the two thresholds were excluded

from the modeling process (bracketed in Table 2.1), because their activity can-

not be determined with a high level of confidence. The dose-response curve

of ORNs is a sigmoid, and small differences in odor delivery can in result

in changes in the concentrations producing inconsistencies between the pre-

viously published results (de Bruyne et al., 2001) and the recordings in this

study, particularly for these “borderline” odors.

To determine the two thresholds we used the following procedure (illus-

trated in Figure 2.2): Starting from activity histograms for each ORN, we esti-

mated a lower threshold below which a molecule is considered inactive. As-

suming that the activities of inactive compounds would be distributed around

zero spikes/s (but without knowing the true distribution), we estimated the

lower threshold to be where the first “gap” in the activity histogram distribu-

tion was located. Similarly, we estimated the upper threshold above which we

considered molecules as being active.

In one case, additional data (Hallem et al., 2004) indicated that ethyl ac-

etate, considered inactive at ab5B according to the threshold, may actually be a

weak activator for the ab5B neuron. In consequence, we marked its activity as

“unknown”.

2.2.3 Descriptor calculation, selection and ranking

We calculated 203 physicochemical molecular descriptors using MOE (Chem-

ical Computing Group, Montreal) for each odorant molecule, including calcu-

lated physical properties, subdivided surface areas, atom and bond counts,

Kier & Hall connectivity and shape indices, adjacency and distance matri-

ces, pharmacophore features, partial charge indices, potential energies, surface

area, volume and shape indices and conformation dependent charge indices.

Table A.1, starting on page 78 in the appendix provides a list of all descrip-

tors that we used in this study, and how they are derived from the chemical

structure.
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Figure 2.3: Some examples for molecular descriptors and their
calculation from molecular structure, demonstrated for pentyl
acetate. The molecular surface is colored by partial charge
(blue=positive, red=negative partial charge, grey=neutral).
The turquoise line denotes the longest chain in the molecule.
The green arrows denote the rotatable single bonds (not count-
ing the conjugated ester bond).

Figure 2.3 illustrates the meaning of various descriptors calculated for pen-

tyl acetate. For example, the number of rotatable bonds (b rotN in Table A.1)

denotes the number of bonds in the molecule that have order 1, are not in a

ring, and have at least two non-hydrogen neighbors. The double-bonded oxy-

gen moiety of the ester group can function as a hydrogen bond acceptor, setting

the number of H-bond acceptors to 1 (a acc in Table A.1). The fractional neg-

ative surface area (e.g. PEOE VSA NEG in Table A.1) of pentyl acetate states

the proportion of the molecular surface that has negative partial charge (indi-

cated by red surface color), and has a value of 0.13. Finally, the longest chain

(diameter in Table A.1 as defined by Petitjean (1992)) has a length of seven.

Prior to descriptor calculation, we generated heuristic 3D conformations

with CORINA (Molecular Networks, Erlangen, Germany). At this stage, we

used one conformation per molecule. Subsequently, those conformations were

refined by energy minimization using MOE’s MMFF94x force field, a modified

version of the MMFF94s force field (Halgren, 1999). Minimization was stopped

at a gradient of 10−5.
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Pruning unsuitable descriptors

Nine descriptors were discarded because they had zero variance across odor

molecules. Some descriptors (e.g. the dipole moment) depend on the three-

dimensional conformation of the molecule, which could lead to inconsistent

modeling results for different conformations. Because we do not know which

conformation of an odorant stimulates the ORN we sought to eliminate de-

scriptors that vary strongly with 3D conformation.

To identify such strongly varying descriptors, we generated multiple con-

formers of all odorants using MOE’s stochastic conformer generation function-

ality, using an energy cutoff of 5 kcal/mol. This resulted in a median nine con-

formers per molecule, with a maximum of 956 conformers for nonanal. For

each descriptor the variance over all conformers of an odorant was calculated

and scaled using the Fano Factor (Fano, 1947), FD = σD
µD

, with σD the variance

and µD the mean of descriptor D over all conformations, without prior nor-

malization. We calculated the mean FD of each descriptor over all molecules

and ranked the descriptors accordingly. Data from preliminary experiments

(not shown) suggested a set of descriptors that particularly affected prediction

quality through conformational variation. From those, the one with the small-

est Fano Factor was the “dipole” descriptor with FD = 0.03. Therefore, we

eliminated a total of 26 descriptors with a mean FD ≥ 0.03.

Descriptor selection

Descriptors were ranked by their ability to separate active from inactive mo-

lecules. We quantified this ability using the Kolmogorov-Smirnov (KS) test

(Manoukian, 1986). The KS-test compares the distribution of two series of data

samples A and B by comparing, for each potential value x, the fraction of val-

ues from A less than x with the fraction of values from B less than x. The

KS-value (kKS) is the maximum difference over all x values. For each ORN,

the descriptor values of all active odorants provided A, while B was provided

14



by the inactive odorants. Figure 2.4 illustrates this process for the b 1rotN de-

scriptor at the ab3A ORN.
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Figure 2.4: Calculation of the KS-value illustrated for the
b 1rotN descriptor at the ab3A ORN. On the abscissa is the
descriptor value, on the ordinate the cumulative fraction of
odorants with a descriptor value equal to or less than the value
on the abscissa. The KS-value is the maximum difference be-
tween the cumulative distribution functions of active (orange)
and inactive (blue) compounds at ab3A.

The KS-test was performed using MATLAB R14 (The MathWorks, Natick,

MA). We ranked the descriptors according to their p-value in the KS-test, that

is, the probability that A and B stem from the same distribution. High KS-

values result in low p-values. Descriptors with low p-values were ranked

highest. Note that the ranking is specific and unique for each ORN. This is

because for each ORN, different molecules constitute the active and inactive

population, and in consequence the descriptor values for active and inactive

molecules are differently distributed, which leads to different KS-values for

the differences between distributions.

2.2.4 Artificial Neural Network training

We trained multilayer feed-forward Artificial Neural Networks (ANNs) to pre-

dict the activity of odorant molecules. Such networks have been described in

detail elsewhere (Hertz et al., 1991; Zupan and Gasteiger, 1999). Briefly, a net-
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work with k inputs, j neurons in the hidden layer, and i output neurons delivers

the output Oµ
i in response to a pattern µ according to equation (2.1):

Oµ
i = g

(
bi + ∑

j
Wij · g

(
bj + ∑

k
wjk · ξ

µ
k

))
, (2.1)

with g(x) the transfer function of the output and hidden layer neurons respec-

tively, bi, bj the bias of the neurons, Wij the weight of the jth hidden neuron to

the ith output neuron, wjk the weight of kth input neuron to the jth hidden neu-

ron, and ξ
µ
k the kth element of input pattern µ. We used a sigmoidal transfer

function g(x) = 1
1+e−x , where x is the net input of a neuron.

The MATLAB Neural Network Toolbox was used for ANN modeling, em-

ploying backpropagation training with a gradient descent algorithm as imple-

mented in MATLAB’s traingdx function (Hertz et al., 1991).

Descriptor values were scaled to zero mean and unit standard deviation

(autoscaling) prior to network training. We assigned a target value of 1 to ac-

tive molecules and 0 to inactive molecules. We formed 250 pairs of equally

sized training and validation data sets by random splitting, keeping the frac-

tion of active to inactive molecules identical in both sets.

Network performance during training was assessed using the mean stan-

dard error (MSE, equation (2.2))

MSE(Oexpect, Opredict) =
1
S

S

∑
i=1

(
Oexpect −Opredict

)2
, (2.2)

where Opredict was the output of the network and Oexpect was given by the

target values.

The MSE on the training data served as fitness function during training.

ANN training was stopped when the MSE on the validation data did not de-

crease for 5,000 training epochs.
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2.2.5 Model performance evaluation

Two factors greatly influence the outcome of ANN training: The ANN architec-

ture (how many neurons to use in the hidden layer) and the number of inputs

(molecular descriptors). More neurons in the hidden layer or a higher number

of inputs to the ANN may allow for more complex description of the data, but

the resulting model is also susceptible to overfitting, that is, modeling fine de-

tails without revealing the global data structure. Because these parameters are

difficult to estimate in advance, we trained many networks with different com-

binations of parameters, varying the number of neurons in the hidden layer

from one to four. In the special case of one hidden neuron, the ANN was re-

duced to a single neuron, which essentially is a Perceptron architecture (Hertz

et al., 1991). To vary the number of descriptors, we cumulatively used the first

1, 2, . . . 30 descriptors from the ranked list, meaning we used the first descrip-

tor, then the first two and so on until we used all 30 highest-ranked descriptors.

In total, we trained 30,000 ANN models per ORN (4 architectures×30 input

dimensionalities×250 repetitions with different data splitting). We proceeded

with selection of models with high predictive accuracy in cross-validation. We

used the Matthews Correlation Coefficient MCC (Matthews, 1975) to assess

prediction quality (eq. (2.3)):

MCC =
P · N + O ·U√

(N + U) · (N + O) · (P + U) · (P + O)
, (2.3)

where P is the number of true positives, that is, data instances that are active

and have also been predicted active. N (true negatives) is the number of data

instances that are inactive and have been predicted inactive. O denotes the

number of overpredicted instances that were predicted active in spite of being

inactive, and U is the number of underpredicted instances, that is, active in-

stances predicted inactive. During each training run, we recorded the MCC on

the training data as well as on the validation data for this run.
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Model selection

A well-trained, well-generalizing model will have a high MCC both on the

training and validation data. Hence, we selected ANNs with a training MCC

equal or greater than their validation MCC, differing by no more than 0.1. From

all ANNs fulfilling these criteria, we selected those with the maximum training

MCC. If the selection resulted in more than one ANN, we used all selected

ANNs and combined their prediction values by averaging.

For some ORNs, additional odorant activity data was available from other

sources (Hallem et al., 2004; Stensmyr et al., 2003), providing an additional

selection constraint on the models (see Table 2.2). Models failing to correctly

predict the additional activity data were discarded. Of the additional com-

pounds, Ethyl-3-hydroxybutyrate, a strong activator for ab3A according to

(Hallem et al., 2004), was not tested in (de Bruyne et al., 2001), making it

suitable as an additional validation point. Ethyl acetate was weakly active in

(Hallem et al., 2004) at the ab5B ORN but inactive in the original data. Assum-

ing that it truly is an activator of ab5B, we excluded it from network training

and used it to validate the ANN predictions. The remaining compounds in

Table 2.2 were originally excluded from training because their activity fell in

between the upper and lower activity threshold and thus could not be derived

with certainty. Since the additional sources suggest they are active, we used

them as validation compounds for model selection.

2.2.6 Electrophysiology

We used the models to predict activity for a new set of odorants and tested

the predictions in a new set of measurements from Drosophila ORNs in coop-

eration with Marien de Bruyne and Melanie Hähnel from the Freie Universität

Berlin. Electrical activity was recorded extracellularly by inserting glass elec-

trodes into individual sensilla on the antenna of Drosophila melanogaster males

as previously described (de Bruyne et al., 2001; Dobritsa et al., 2003). Each
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Table 2.2: Additional odorant activity data that was used
for model selection. Sources: a: (Stensmyr et al., 2003), b:
(Hallem et al., 2004).

ORN Odorant Name Source Remarks

ab1D furfural a -
ab2B cyclohexanol a -

(R)-ethyl-3-hydroxybutyrate b unknown stereoisomer,
not tested by de Bruyne
et al. (2001)

ab3A butyl acetate b -
ethyl acetate b unsure activity in b
1-hexanol b unsure activity in b

ab3B pentyl Acetate b unsure activity in b
E2-hexenal b unsure activity in b

ab5B ethyl acetate b considered inactive in b

sensillum houses several ORNs, either 4 (ab1 sensilla) or 2 (ab2, 3, 4, 5 and 6

sensilla). Neuronal excitation was measured as counts of spikes (action poten-

tials) produced during a 500 ms stimulation period. Spike rates for each odor-

ant were averaged from at least 9 (ab1 and ab2 sensilla), 7 (ab3 sensillum) or

3 individuals (ab5 and ab6 sensilla). It has previously been shown that spikes

produced by the neurons in each of these sensilla can be reliably separated

based on amplitude and shape differences (Clyne et al., 1997; de Bruyne et al.,

2001; Stensmyr et al., 2003). The models were based on data generated with

Tungsten electrodes but tested using saline filled glass electrodes. Both are

standard methods that have been shown to produce similar results (Dobritsa

et al., 2003). Most odorants were dissolved at 1% v/v in paraffin oil and air

from a 5ml syringe, containing 10µl on a small piece of filter paper, was in-

jected with a ca. 9-fold dilution factor (de Bruyne et al., 2001). Three odorants

were tested at a 100 times lower concentration (see Table 2.4) because they were

extremely potent activators for some ORNs.
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2.2.7 Odorants

Odorants were obtained from Sigma, Aldrich or Fluka, of purity >99% or high-

est available, except for octanal (98%), salicylaldehyde (98%), ethyl 3-hydroxy-

butanoate (98%) and 2-octanone (98%). Except for (S)-(+)-carvone, all chiral

odorants were applied as racemic mixtures.

2.3 Results and discussion

The goal of the first part of this thesis was twofold: First, we aimed at predict-

ing ORN responses from molecular structure. Second, we wanted to describe

structure-activity relationships between the odorant and the activated receptor.

To achieve the first aim, we trained artificial neural network models on an

existing dataset of ORN responses, using selected subsets of chemical descrip-

tors for odorant representation. We then recorded the responses of these same

ORNs to a new set of chemicals to test whether the models we generated can

be used to predict an odorants activity.

With the second aim in mind we analyzed the set of discriminative descrip-

tors in order to characterize chemical properties that favor activation of each

ORN.

2.3.1 Modeling ORN response and testing

We trained ANNs to model the activity of seven Drosophila ORNs in response to

stimulation with odorant molecules. As training data we used ORN response

data obtained in a previous study by in vivo electrophysiology (de Bruyne et al.,

2001). We defined thresholds in activity such that a given compound can be

classified as either “active”, “inactive”, or “uncertain”, depending on the spike

rate it elicits in the ORN. Compounds with uncertain activity were not used for

training the ANNs for that specific receptor.

After selecting relevant descriptors for each ORN, we trained 30,000 ANN
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Figure 2.5: These odorants were screened to check prediction
quality. Compounds names are given in Table 2.4.

models per ORN, selected those with the highest predictive power, and used

them to predict ORN responses to 21 compounds, which were subsequently

tested in vivo. These compounds, in the following referred to as “test data”, are

shown in Figure 2.5. We also assayed ten compounds that had already been

tested by de Bruyne et al. (2001).

Spike rates in the test data were transformed into binary all-or-none data

using the same thresholds as we used for the training data. Molecules with

spike rates between the upper and lower threshold were excluded from the

analysis, like in the training data.

We assessed prediction performance using the Matthews Correlation Coef-

ficient for binary data (MCC, eq. 2.3). Table 2.3 shows the MCC for the training

data and the test data. We excluded ethyl-3-hydroxybutyrate at ab2B and butyl

acetate at ab3A from the calculation of the test set’s MCC, since these molecu-

les were used to select the best models (see section 2.2.5 on page 17). These

compounds have entered the modeling process prior to testing and hence are

not valid “test” compounds for those ORNs.

Five out of seven models succeeded in correctly predicting the training

data. The training predictions for the ab3B and 6A neuron show imperfect

performance, but still correlate with the activity in the training data.
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The prediction of ORN response to novel molecules shows a mixed picture:

For the ab3A ORN, the model achieved an MCC of 0.85, providing reliable

prediction. For the ab1D, 2A, 5B and 6A ORNs, the MCCs range from 0.66 to

0.69, still indicating good performance. In contrast, the models showed only

weak performance for the ab2B (MCC = 0.17) and 3B ORNs (MCC = 0.34).

The discrepancy between performance on the training data and the test data

for some receptors may have several causes. First, although we used cross-

validated training and, in some cases, additional activity data for model se-

lection, due to the large number of models we built, it is possible that some

models perfectly predict all training data, albeit by chance. Second, descrip-

tor selection was performed on the whole data set instead of a cross-validated

procedure, possibly “over-optimizing” descriptor space for the training data.

However, because of the data splitting necessary for cross-validation, the num-

ber of data instances in one part of the data would have been too small for the

statistical test we used to select descriptors. In both cases, the performance on

the independent test set reveals the actual quality of prediction. This set con-

tained only substances that did not enter the model creation at any point and

is thus not affected by the above issues.

Table 2.4 gives detailed insight into the compounds we used for testing and

the results of the screening, in comparison with the predictions. It should be

noted that one compound (cyclohexanone) was inactive at ab3A in the training

data (3 spikes/s), but active in screening (33 spikes/s). A similar observation

made for 4-methylphenol at the ab1D neuron: its activity was uncertain in

the training data (22 spikes/s), but it was inactive in screening (5 spikes/s).

Table 2.3: Matthew’s Correlation Coefficient (MCC) for the
training and the test data.

ORN ab1D ab2A ab2B ab3A ab3B ab5B ab6A

MCC training 1.00 1.00 1.00 1.00 0.77 1.00 0.86
test 0.69 0.69 0.17 0.85 0.34 0.68 0.66
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These differences may be a consequence of the effect that a slight variation in

concentration may suffice to elicit a response (de Bruyne et al., 2001).

A possible source of error is that it is not always certain that the com-

pound actually arriving at the receptor neuron did not undergo degradation,

or that traces of other compounds contaminated the stimulus, for example as

by-products from synthesis or as remnants after purification. These effects can-

not be addressed by this study, but would require analysis of the air stream in

parallel to the measurements, for example by gas chromatography (Vetter et al.,

2006; Lin et al., 2005).

One point of discussion is the threshold setting for activity assignment, in

that it followed no algorithmic procedure. However, these thresholds proved

to be sensible choices, and appeared reasonable to us according to the data.

First of all, the application of thresholds was necessary to simplify the data. As

in any modeling study, simplifications have to be introduced in order to focus

on the most relevant features, especially when the amount of data is limited.

In this case, we chose to discard the quantitative activity data in favor of a bi-

nary active/inactive prediction. Although our threshold settings may have en-

hanced the aforementioned difference in activity assignment, these were more

likely due to changes in the experimental setup, or variance in the Drosophila

stock between the measurements of the training and test sets. Further, the mod-

els do not take into account the different vapor pressures of the compounds or

effects of dose dependency of the responses, because the required data was not

available for all compounds.

We also did not explicitly address any possible effects of modifiers of OR

activity such as Olfactory Binding Proteins (OBPs). These proteins populate

the aqueous lymph surrounding olfactory dendrites and have been shown to

be involved in olfaction. Drosophila mutants devoid of the LUSH OBP have

defects in avoiding high alcohol concentrations (Kim et al., 1998) and lack re-

sponse to a pheromone (Xu et al., 2005). It has also been suggested that OBPs

are involved in shuttling hydrophobic odorants through the lymph (Kaissling,
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2001). The model, being trained on the activation data of ORNs in their “native

surround” (i.e. the lymph), implicitly treats everything between the odorant

and ORN activation as a “black box” and hence also contains effects of OBPs,

if present.

2.3.2 Interpretation of descriptor selection

As stated above, we selected subsets of descriptors that are best suited for sep-

arating active from inactive compounds prior to ANN training. In addition to

reducing the “noise” introduced into the data by unsuitable descriptors, the

ranked list of descriptors can also give insight into the SAR of the ORNs. Since

each descriptor represents a molecular feature, descriptors in the selected sub-

set point to potentially preferred molecular features detected by an ORN. The

sum of preferred features determines an ORN’s “receptive field”.

The descriptor rankings were produced using the p-value from a Kolmo-

gorov-Smirnov test (KS-test) for significant difference between two data sets

(inactive vs. active compounds), separately for each ORN. Descriptors with the

lowest p-values were ranked highest. The ranked lists of descriptors including

their associated p-values are given in table A.2 in the appendix.

We observed that the set of highest ranking descriptors is different for each

ORN. This may correspond to a different SAR for each ORN, in that different

chemotypes are recognized by different receptors.

In the following, we describe how the descriptor rankings relate to the SARs

of the ORNs in this study. For the sake of compact display, we refer to indi-

vidual descriptors by their abbreviations. More elaborate explanations of all

descriptors that appear here and in the ranked lists are provided in table A.1

in the appendix.

ab1D

For ab1D, the highest ranked descriptor is std dim3, a 3D shape descriptor,

that describes the standard deviation along the principal component axis of the
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Figure 2.6: Three activators of ab1D,
methyl salicylate (187 spikes/s), pheny-
lacetaldehyde (76 spikes/s) and ace-
tophenone (157 spikes/s) reveal their
disk-like shape in surface representa-
tion. Red areas indicate negative par-
tial charge, blue areas positive par-
tial charge, and white indicates neutral
(=no) charge.

atom coordinates. Typical activators of ab1D like methyl salicylate, acetophe-

none and phenylacetaldehyde have disk-like shape, which is due to their aro-

matic ring systems (see Figure 2.6). Hence, they will have small values for this

descriptor, discriminating them from the other molecules in the data set. This

descriptor does not feature strongly in the rankings of other ORNs that respond

to aliphatic compounds. Furthermore, the high ranking of several descriptors

for charge distribution on the molecular surface (such as PEOE VSA FPNEG,

Q VSA FNEG, FCASA-) reflect the exposed carbonyl groups in most activators

of ab1D, creating a focused negative partial charge distribution on the molecu-

lar surface (cf. Figure 2.6). Charge distribution descriptors feature high on the

list of several ORNs.

ab2A

A strong effect of partial charge can also be observed for the activators of

the ab2A ORN (ethyl acetate, 2,3-butanedione, propanone, ethyl propionate),
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Figure 2.7: Conolly-surface representation for activators of
the ab2A ORN. Color scheme is identical to Figure 2.6.

which are all comparably small and bear a focused negative partial charge on

the molecular surface (cf. Figure 2.7). The focused charge is again represented

in the highest scoring PEOE VSA FPNEG descriptor. The high rank of a ICM

can be related to the small molecule size. It describes the mean atom infor-

mation content, which reflects the entropy, used by its information-theoretical

meaning, in atom composition. For two equal-sized molecules, the one which

is composed of more different atom types will have the higher entropy. Ac-

cordingly, for two molecules with the same number of different atom types,

the smaller one will have higher entropy. Now the high scoring molecules in-

corporate only two atom types, namely O and C, as well as the majority of the

remaining molecules in the data set. Thus, the smaller molecule size likely is

the discriminating feature. Several connectivity descriptors (chi1v C, chi1 C

etc.) also reflect the importance of molecule size.
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ab2B and ab3A

The AM1 HOMO descriptor, which is an index for “reactivity”, yields a high

rank for the ab3A neuron. Moreover, the MNDO HF descriptor (heat of forma-

tion) correlates well with ab3A spike rate change (Pearson correlation coeffi-

cient: −0.55, p < 10−4). Also, the ionization potential (reflected in the AM1 IP,

PM3 IP and MNDO IP descriptors) yields a high rank. All these descriptors

relate to the reactivity of a molecule and are negatively correlated with activ-

ity. This seems evident if one considers that most activators of ab3A are esters,

which are less reactive than for example aldehydes and primary alcohols, two

groups to which many of the non-activators belong.

Similar observations can be made for ab2B, where four of the five acti-

vators of the ab2B ORN (ethyl butanoate, hexanol, γ-valerolactone, ethyl-2-

methylbutanoate) have a slightly elevated ionization potential according to the

AM1 IP descriptor, compared to non-activators (e.g. 3-methylthio-1-propanol,

benzaldehyde or linalool), as well as a high ranking of the AM1 HOMO de-

scriptor.

ab5B

For the ab5B ORN, the highest ranked descriptors are related to molecular

shape, expressed by descriptors developed by Hall and Kier (1991) (KierA3,

KierA1, KierA2, KierFlex, Kier2, Kier3). In combination with the high ranked

b 1rotR descriptor (the relative number of rotatable bonds in the molecule), this

reflects ab5B’s preference for larger, flexible ligands, such as pentyl acetate, 2-

heptanone and 3-octanol.

ab6A

Finally, for the ab6A ORN the Kier3 and Kier2 descriptors described by Hall

and Kier (1991) rank highest. According to Todeschini and Consonni (2000),

Kier2 encodes information about the “spatial density of atoms” in a molec-
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ular graph, while Kier3 encodes the “centrality of branching”; Kier3 values

are larger when branching is located at the extremities of the molecular graph

or when no branching happens in the molecule, and they are smaller when

branching is located near the center of the molecule. Interestingly, the sin-

gle ANN model that was selected for prediction of ab6A activity only used

these two descriptors. Considering that the descriptor values of activators all

lie inside a very small range in which no non-activators are present (data not

shown), and the fact that the selected ANN model has two hidden neurons,

the network simply “cut out” the value range in which the activators of ab6A

lie, a typical effect of overtraining. This may be a possible explanation for

the rather poor predictive performance of the ab6A model. The ab6A ORN

shows a somewhat broader selectivity characteristic: activators are not as easy

to discriminate from non-activators as for the other ORNs, and our method of

assigning binary activity values may not have been appropriate in this case.

Here it is important to note that ab6A is the only ORN in this study for which

the receptor gene could not yet be identified (Hallem et al., 2004).

General remarks

The results we present in this section should be taken as an example of how to

extract knowledge from such an analysis. It is not justified to interpret an in-

dividual descriptor as the sole discriminating feature. Rather, the KS-statistics

demonstrate that many features are suitable for classification. Descriptor se-

lection is the result of a statistical procedure, and depends on the composition

of the data set. Moreover, the ANN models combine the information obtained

from the selected features to represent a more complex and nonlinear (except

for Perceptron-type ANNs) relationship between molecular structure and ac-

tivity than is suggested by the inherently linear descriptor ranking.

With these notes of caution, one might speculate that binding of odor mole-

cules is achieved through different receptor-ligand interaction mechanisms at

each OR. For example, our study suggests that ab2A is activated at least in part
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by the polarity of small ligands, whereas ab5B appears to require the larger lig-

ands with flexible side chains. While in the past the classification of chemical

stimuli was based on functional group or chemical class, the use of physico-

chemical descriptors provides a different view on the molecular features that

govern ORN activation.

A systematic analysis of ORN selectivity was complicated by the limited

amount of ORN response data. Only recently, more comprehensive data on

Drosophila ORN responses became available (Hallem and Carlson, 2006). Al-

though the data was acquired using a different methodology (heterologous

expression of OR genes in an “empty” ORN), it is possible that more data on

these ORs will yield better results. This may be a fruitful task for a future study.

It will be interesting to see if the abstract description of chemical entities as we

used here can aid to reveal a logical structure in the selectivity of ORNs.

2.3.3 Using ORN responses to predict ORN responses

If ORN responses really span some sort of chemical space, it should as well be

possible to use the spike rates as a descriptor. To assess this hypothesis, we

tried to predict activity of one ORN using responses of the remaining ORNs.

We used the logarithm of the spike rates, because principle component analysis

showed that this transformation results in a more uniform distribution with

less outliers (data not shown). ANN training and model selection followed the

same protocol as above, except that only 150 pairs of test and training data were

formed, and no additional validation data was available to prune networks

that showed poor generalization. Since only six descriptors were available to

train the ANNs, we did not apply KS-statistics for data reduction.

The results are given as correlation coefficients in Table 2.5. ORNs ab3A,

ab3B, ab5B, and ab6A show moderate correlation (MCC between 0.47 to 0.66)

on the test set, but prediction completely failed for ab1D, ab2A (MCC= 0, re-

spectively) and ab2B (MCC= −0.10). This indicates that this approach indeed

works, at least for four out of seven receptors. The failure at the remaining
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Table 2.5: Matthew’s Correlation Coefficient (MCC) for train-
ing and screening (test) using ORN responses as descriptor.

ORN ab1D ab2A ab2B ab3A ab3B ab5B ab6A

MCC training 0.55 0.0 0.76 1.00 0.77 0.80 0.72
test 0.0 0.0 -0.10 0.47 0.66 0.54 0.54

three may results from the fact that for these receptors there are too few actives

in the test set, namely one for each ab1D (salicylaldehyde) and ab2A (propyl ac-

etate), and three for ab2B (octanol, ethyl 3-hydroxybutanoate and 2-octanone).

These results suggest that ORNs do not code in an “orthogonal” way, i.e.

their responses are not uncorrelated. If this was the case, the above analysis

must have failed. Rather, the properties each ORN class encodes seem to over-

lap between classes, providing a partly redundant coding scheme.

2.4 Conclusion

We have demonstrated that it is possible to predict Drosophila ORN responses

from molecular structure. The approach performed well on the majority of re-

ceptors, considering that only few data was available for training. The features

that were selected as being suitable for model training indicate that each ORN

has different preferences regarding the physicochemical properties of its po-

tential ligands. Finally, the ORN responses themselves can effectively be used

as a descriptor to predict responses of other ORNs, providing evidence that

ORNs indeed analyze chemical space in a way that can be exploited to predict

receptor-ligand affinities. Moreover, it indicates that the encoding by olfactory

receptors is partly redundant.
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Chapter 3

Modeling the insect antennal

lobe with self-organizing maps

3.1 Background

The antennal lobe in insects (and the analogous structure in vertebrates, the ol-

factory bulb) are located at the second stage of olfactory processing. With sev-

eral lines of evidence suggesting a chemotopic ordering in this neural structure,

they provide a fascinating target to study how chemical similarity is defined in

the olfactory system. Here, we show how self-organizing maps (SOMs) can be

used to investigate this issue.

3.1.1 Self-organizing maps

SOMs were introduced as a feature extraction and data mapping approach by

Kohonen (1982). Many variations of Kohonen’s original concept have been

conceived ever since (Kohonen, 2001). In the area of bioinformatics they have

been primarily used for visualizing protein and DNA sequence and structure

spaces (Arrigo et al., 1991; Ferrán and Ferrara, 1991; Schuchhardt et al., 1996;

Hanke and Reich, 1996; Schneider et al., 1998; Aires-de-Sousa and Aires-de-
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Sousa, 2003; Schneider and Fechner, 2004; Fankhauser and Mäser, 2005; Bens-

mail et al., 2005), drug design tasks (Schneider and Wrede, 1998; Polanski and

Walczak, 2000; Givehchi et al., 2003; Schneider and Nettekoven, 2003; Tecken-

trup et al., 2004; Xiao et al., 2005), surface and property visualization and pre-

diction (Gasteiger et al., 1994; Anzali et al., 1996; Hasegawa et al., 2002; Roche

et al., 2002; Balakin et al., 2005), and binding site analysis (Stahl et al., 2000; Del

Carpio-Muñoz et al., 2002) — often in conjunction with other clustering and

pattern matching techniques. Typically, the use of SOMs has been restricted to

two-dimensional (2D) projections of higher-dimensional data.

3.1.2 The SOMMER Application

We developed SOMMER, the Self-Organizing Map Maker for Education and

Research as a toolbox for the training and visualization of two- and three-

dimensional (3D) unsupervised SOMs. The extra dimension in the SOM grid

may allow for a better low-dimensional mapping of complex data manifolds.

Moreover, the 3D grid allows for SOM topologies which are not available in 2D

space, and SOMMER provides map topologies for planar rectangular, toroidal,

cubic and spherical projections (see Figure 3.1).

The software was written in Java and makes use of the 3D visualization

capabilities of the Java3D-package (https://java3d.dev.java.net/). By display-

ing the training process of the SOM, it illustratively demonstrates how SOM

neurons self-organize to map the data distribution. This feature does not only

facilitate the understanding of the training process (being particularly valuable

for teaching), but can be used to assess the usefulness of a mapping solution.

Integrated data processing tools provide means for data normalization. The

SOM topology can also be set to a 2D scaffold. In this case, the user benefits

from the 3D display of the data distribution, making eventual glitches in the

2D data mapping obvious. High-quality images can be saved for publication

purposes.

The use of spherical lattices for self-organizing maps was first proposed
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by Ritter (1998) as an example for the application of SOMs in non-Euclidian

spaces. Sangole and Knopf (2003b) used deformations of spherical SOMs to

create three-dimensional representations of numeric data sets that can be used

for visual assessment of data set similarity and data classification. Wu and

Takatsuka (2004) showed that spherical SOMs can converge to smaller quan-

tization errors in less training epochs than SOMs with a rectangular, two-di-

mensional lattice. It has also been shown that spherical SOMs can yield low-

dimensional feature maps of data distributed on the surface of a hypersphere

with a lower embedding error than planar SOMs can (Nishio et al. (2004),

Poster abstract for the Eighth Annual International Conference on Computa-

tional Molecular Biology (RECOMB), San Diego, USA). These observations are

not surprising due to the fact that a SOM-projection is best if the dimensionality

of the SOM is identical to the dimension of the data (Kohonen, 1982, 2001)—

still, they demonstrate possible primary applications of spherical SOMs.

Suggesting an alternative application scenario for SOMs, Sangole and Knopf

(2003a) showed how deformable spherical SOMs can be applied to create rep-

resentations of freeform objects with the application to object recognition and

shape registration, and demonstrated the capability of the spherical SOM to

mimic object surfaces and reconstruct missing points.

Here, we apply SOMs to provide a regular projection of a three-dimensional

object, namely the antennal lobe of Drosophila.

3.1.3 Chemotopy in Drosophila’s antennal lobes

The antennal lobes of Drosophila are structures of neuropil in the olfactory

system. Axons from primary receptor neurons converge onto this structure,

forming glomeruli. These glomeruli are sites of high synaptic connectivity be-

tween primary receptor neurons and secondary projection neurons. Axons

from receptor neurons bearing the same olfactory receptor converge on the

same glomerulus (Couto et al., 2005; Fishilevich and Vosshall, 2005).

It is speculated that the arrangement of glomeruli follows a chemotopic
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rule, such that similar odorants activate nearby glomeruli, as has been previ-

ously reported in the honeybee (Sachse et al., 1999), zebrafish (Friedrich and

Korsching, 1997), mouse (Uchida et al., 2000) and rat (Meister and Bonhoeffer,

2001).

Currently, there is no clear evidence for or against a chemotopic ordering

in the antennal lobe of Drosophila. While Fishilevich and Vosshall (2005) stated

that chemotopy is not obvious in the antennal lobe, Couto et al. (2005) have

reported that they did observe a clear chemotopic ordering, which was based

on the chain length of aliphatic esters.

In a recent study, Hallem and Carlson (2006) provide the most compre-

hensive data set for Drosophila olfactory receptor responses available to date.

Based on the mapping from receptor to glomerulus defined by Fishilevich and

Vosshall (2005) and Couto et al. (2005), they derived glomerular activation from

the activation of the “driving” receptor, i.e. the receptor expressed in the recep-

tor neuron class that innervates the glomerulus. Although the authors could

not establish a clear correspondence between chemical similarity and distance

of the activated glomeruli, it is not entirely clear from their publication how

they measured glomerulus distance. Since they state glomerular distance in

µm, they presumably used the Euclidian distance in three-dimensional space.

However, the antennal lobes are spherical structures with the glomeruli

mainly arranged on their surfaces. Hence, the Euclidian distance between two

glomeruli may not be an appropriate measure for their separation, since this

would ignore their spherical arrangement. The degree of separation, as used

by Couto et al. (2005) is certainly a better measure to quantify the distance be-

tween two glomeruli, because it is based on the neighborhood structure and

takes the local topology into account.

SOMs provide a topological mapping of the original data, which makes

them particularly useful in this scenario. They enable straightforward, algo-

rithmically well defined and reproducible projection of the three-dimensional

arrangement of glomeruli onto the two-dimensional plane.
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Figure 3.1: Topologies implemented in SOMMER. A) Rect-
angular 8 × 10, B) cubic 5 × 4 × 3, C) toroidal 8 × 10, D)
spherical with f = 15 (cf. equation 3.1).

3.2 Methods and data

3.2.1 Self-Organizing Maps

SOM Topologies

An SOM consists of a set of units which are linked by edges. These units are

also called neurons, because the origin of the SOM was inspired by the various

topographic mappings found in the brain (Kohonen, 1982). Figure 3.1 depicts

the linkage topologies available in SOMMER. Currently, these are:

• Rectangular: a rectangular X × Y grid, containing X · Y neurons (Figure

3.1A).

• Cubic: a cubic X×Y× Z grid, containing X ·Y · Z neurons (Figure 3.1B).

• Toroidal: rectangular topology with wrapped edges, resulting in a torus

(Figure 3.1C).

• Spherical: a sphere with the neurons laid out regularly on its surface (Fig-

ure 3.1D).
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Creating the spherical topology is handled differently than the other topolo-

gies, because distributing a number of points evenly on a spherical surface is a

non-trivial task. Ritter (1998) used subdivisions of the icosahedron to tessellate

the sphere. While that approach yields an almost regular tessellation, it offers

a limited choice for the total number of neurons N, which obeys the formula

|N| = 10 · f 2 + 2, with f the subdivision frequency. Hence, for f = 1, 2, 3, . . .

the number of neurons is quantized to |N| =12, 42, 82, 162, 322, 642, 1282,. . .

neurons.

We adopted the tetrahedron-based tessellation method from Java3D. The

number of neurons obeys equation 3.1

|N| =
(

f + (3− ( f − 1) % 4)
2

)2
+ 2, (3.1)

with % denoting modulo division. It leaves the choice between 6, 18, 38, 66,

102, 146, 198,. . . neurons. We chose this tessellation method over the icosahe-

dron method because it allows for a more fine-grained tuning of the number of

SOM neurons.

Training Algorithm

The algorithm implemented in SOMMER is based on the work of Loos and

Fritzke (Loos HS, Fritzke B (1998), DemoGNG v.1.5 Manual). Since the grid-

based distance metric used therein is not applicable to all available topologies,

we generalized the distance between two neurons on the grid to a graph-based

topological distance, such that dtopo(n1, n2) is equal to the number of graph

edges on the shortest path between the two neurons n1 and n2. With this slight

modification, the algorithm is suitable for training an SOM with any topology,

as long as some topological distance is defined.

The “winner neuron” nw(ξ) of a given data pattern ξ is defined as the neu-

ron with minimal distance d(n, ξ), where n is the neuron’s prototype vector (i.e.

its coordinates in data space) and ξ the vector associated with the data pattern.
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SOMMER implements Euclidean distance and the Manhattan (or city-block)

metric to measure d.

In every training epoch t, the prototype vector n of each neuron is updated

according to equation 3.2

∆n = λ(t) · ν(nw, n, t) · (ξ − n), (3.2)

with nw the winner neuron, and the time-dependent learning rate λ(t) defined

by equation 3.3

λ(t) = λi

(
λf

λi

) t
tmax

, (3.3)

with λi the initial learning rate at t = 0 and λf the final rate at t = tmax.

The neighborhood function ν determines how strongly a neuron n is adap-

ted relative to the winner neuron nw. We use a Gaussian neighborhood func-

tion (equation 3.4)

ν(nw, n, t) = e
−dtopo(nw,n)2

2σt2 , with σ(t) = σi

(
σf

σi

) t
tmax

, (3.4)

where σi and σf refer to initial and final values of the neighborhood function.

The SOM training algorithm works as follows:

1. Initialize the prototype vector n of each neuron to a random vector.

2. Choose a data pattern ξ and determine the winner neuron nw(ξ) with

minimal distance d(nw, ξ).

3. Adapt each neuron n according to equation 3.2.

4. Increase the training epoch t = t + 1.

5. If t < tmax continue with step 2, else terminate.
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3.2.2 Three-dimensional models of the antennal lobes

Models of Drosophila’s antennal lobes are provided by the Flybrain database as

VRML-models (Armstrong et al. (1995), http://www.flybrain.org, Accession

Number AB00203). We used the model of “specimen 4”. From the VRML-file,

the surface coordinates of the glomeruli were extracted and converted to a for-

mat readable by SOMMER. In order to reduce the amount of surface data, we

extracted 1000 representative surface points (see Figure 3.2B) from the avail-

able 5808 surface points by the usage of the MaxMin algorithm, using the Java-

version of the application described by Schmuker et al. (2004).

3.2.3 Odorant data set

110 Odorants from the publication by Hallem and Carlson (2006) were con-

verted into a database using ChemOffice 2002 (Cambridgesoft, Cambridge,

MA). 184 Molecular descriptors were calculated with MOE (Molecular Com-

puting Group, Montreal). We only calculated 2D-descriptors to minimize vari-

ations due to unknown conformation or stereo-configuration.

3.3 Results and Discussion

We used an SOM to project the spherical arrangement of glomeruli in Drosophi-

la’s antennal lobes onto the two-dimensional plane. The projection in this plane

allows for a more accessible visualization of activation patterns in response to

odorant stimuli of the antennal lobe than it is possible using the original, three-

dimensional structure.

3.3.1 SOM representations of the antennal lobe

Figure 3.2A shows a VRML-model of Drosophila’s antennal lobe from the Fly-

brain database (Armstrong et al., 1995). The glomeruli are colored according to

their anatomical location: Blue for ventral, yellow for dorsal. Shadings of these
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Figure 3.2: Drosophila’s antennal lobe and SOM represen-
tations thereof. A) The original model of the antennal lobe.
Each bulky structure corresponds to one glomerulus. Colors are
assigned based on the anatomical location of the glomeruli (see
text). B) 1000 surface points extracted from the model. Each
glomerulus has been assigned a unique color. C) An SOM af-
ter training; spheres represent SOM units. D) Two-dimensional
projection by a rectangular 20× 30 SOM. E) Representation
by a spherical SOM with f = 30, front view, F) Back view.

colors indicate central, lateral or anterior positions.

A representative subset of surface points (Figure 3.2B) served as training

data for SOM. We trained a planar rectangular SOM with 20× 30 neurons and

a spherical SOM with f = 30 (cf. equation 3.1). A trained SOM mimics the

three-dimensional shape of the antennal lobe (Figure 3.2C). By “unfolding” the

SOM, i.e. arranging it according to its inherent topology, a planar rectangular

(Figure 3.2D) and a spherical representation (Figure 3.2E and F) were obtained.

Each unit of the SOM is colored according to which glomerulus the majority

of surface points assigned to it belong to. Each surface point gets assigned to

the unit closest to it (the winner neuron nw, see Methods). Hence, each group

of units bearing the same color identifies the same glomerulus.

The unfolded representations facilitate the inspection of neighborhood re-

lationships between single glomeruli. The spherical representation is likely

41



to deliver more accurate results, due to the congruence between the original,

spherical shape of the lobe and the topology of the SOM. On the other hand,

to inspect the entire spherical SOM, at least two views are needed, as shown

in Figure 3.2E and F. In contrast, the planar rectangular SOM delivers a projec-

tions that is likely to have some mapping errors, but can readily be visualized

on two-dimensional media such as paper or a screen.

In addition, although the antennal lobe has spherical organization, its real

shape rather resembles a semi-sphere. Only its front half (the part which is

shown in Figure 3.2A) is populated with glomeruli. The spherical SOM how-

ever tries to map the structure to an entire sphere, which is prone to introduce

mapping errors. Because of those disadvantages we decided to use the planar

rectangular representation of the antennal lobe in the remainder of this study.

3.3.2 Two-dimensional projections of activation patterns

Of 49 glomeruli that have been described by Fishilevich and Vosshall (2005)

and Couto et al. (2005), 21 can be mapped to a driving receptor which has been

characterized by Hallem and Carlson (2006). Table 3.1 summarizes the map-

ping we derived from those publications. Olfactory receptors are identified by

their genes, while the glomeruli are named by their position. We adopted the

naming convention used in the Flybrain database, where “D” means dorsal,

“V” ventral, “A” anterior, “L” lateral and “C” central. DA4 e and DL3 e are

annotated as extra compartments in the Flybrain database.

There is disagreement on the targeting of the 47b OR: in Fishilevich and

Vosshall (2005) VA1m is given as its target, while Couto et al. (2005) state

VA1v/l. From the published imaging data, it is not clear to decide which as-

signment is true. Rather it is possible that slight variations in the experiment or

variations between individual flies cause the observed targeting to fluctuate. In

any case, the suffixes “m” and “v/l” described the medial and ventral/lateral

subdomains of the VA1 glomerulus. We chose to assign it to the medial subdo-

main, which appears to be the best compromise based on the published data.
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Table 3.1: Mapping of receptor genes to glomeruli as de-
scribed by Couto et al. (2005) and Fishilevich and Vosshall
(2005).

OR Glom. Remarks

2a DA4
7a DL5
9a VM3
10a DL1
19a DC1
22a DM2
23a DA3
35a VC3l
43a DA4 e extra compartment
43b VM2
47a DM3
47b VA1m VA1v/l in Couto et al. (2005)
49b VA5
59b DM4
65a DL3 e extra compartment
67a DM6
82a VA6
85a DM5
85f DL4
88a VA1d
98a VM5
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DA4 DL5 VM3 DL1 DC1 DM2 DA3

VC3l DA4_e VM2 DM3 VA1m VA5 DM4

DL3_e DM6 VA6 DM5 DL4 VA1d VM5

Figure 3.3: The position of 21 glomeruli for which receptors
have been characterized by Hallem and Carlson (2006) in the
two-dimensional SOM-projection of the antennal lobe.

Figure 3.3 shows the mapping of those 21 glomeruli in the two-dimensional

projection provided by the SOM. Due to the two-dimensional projection some

glomeruli have been fragmented. This is most prominent for the VC3l, DA4 e

and VM5 glomeruli. Such distortions are a consequence of mapping high-

dimensional structures to low-dimensional space.

Note that the anatomical arrangement has coarsely been conserved. For

example, all dorsal glomeruli are projected inside the upper left quadrant of

the map, while ventral glomeruli occupy the remaining regions. For the lat-

eral, anterior and central locations such a regular mapping is more difficult to

describe on the map.

3.3.3 Projected activity maps

Using the activity data provided by Hallem and Carlson (2006), and assuming

that glomerular activation is identical to receptor activation, we derived two-

dimensional projections of glomerular activation.

Figure 3.4 shows some examples for projected activation maps. While 1-

hexanol evokes a distributed pattern with a wide range of spike rates (Figure
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Figure 3.4: SOM-projections of glomerular activity patterns.
Color indicates the activation in spikes/s of the respective olfac-
tory receptor neuron innervating the glomerulus. A) 1-hexanol,
B) γ-butyrolactone, C) benzyl alcohol.

3.4A), γ-butyrolactone evokes strong activation in four glomeruli (Figure 3.4B).

Benzyl alcohol fails to evoke spike rates larger than 100 spikes/s, but activates

glomeruli which are not activated by the other two odorants (Figure 3.4C).

These two-dimensional projections also may allow comparisons to activa-

tion patterns observed in vertebrates, where the olfactory bulb is more pla-

nar. These activation maps are frequently obtained by techniques that image

neuronal activity, and the resulting images are two-dimensional (Friedrich and

Korsching, 1997; Uchida et al., 2000). Moreover, the mapping of activation pat-

terns with SOMs as presented here may enable comparisons between activa-

tion patterns in the secondary olfactory organs of different species.

3.3.4 Analysis of chemotopy

Chemotopy, in the sense that we analyze it here, is the arrangement of glomeruli

such that the activation patterns evoked by odorants, when presented in se-

quence of monotonically changing values of one descriptor, exhibit some kind

of directional shift. For example, if molecular weight is represented in the

antennal lobe’s topology, low-weight odorants would activate regions of the

antennal lobe distant from those activated by high-weight compounds, and

intermediate-weight compounds would activate glomeruli in between.

In order to visualize the topological representation of a certain descriptor,
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Figure 3.5: Distribution of selected descriptors in the antennal
lobe. A) Molecular Weight, B) Diameter, C) KierFlex. Color
indicates the median descriptor value for compounds that evoke
spike rates above 50 spikes/s in the respective glomerulus. In-
active glomeruli appear in black.

we replaced the glomeruli in the activity map with the median descriptor value

of molecules that evoke spike rates above 50 spikes/s in this glomerulus. It is

important to note that we used the absolute spike rates instead of the baseline-

corrected spike rates for activation assessment. Figure 3.5 shows the represen-

tation of three selected molecular descriptors in the antennal lobe.

Considering the upper right area of Figure 3.5A, there seems to be a trend

for low-weight compounds being represented in the upper right corner, while

heavier compounds tend to activate glomeruli more central in the map. How-

ever, this is most prominent in the upper half of the map. For example, the two

glomeruli that are represented in the center of the map, namely VA6 and DL5

(cf. Figure 3.3) do not follow this trend. A possible explanation for this is that

chemotopy on molecular weight may not be a global feature of the antennal

lobe, but restricted to a subset of glomeruli.

Diameter describes the largest value in the distance matrix and corresponds

to chain length (Petitjean, 1992). This feature also shows a coarse chemotopy

(Figure 3.5B), partially supporting the findings described by Couto et al. (2005).

Small diameter compounds particularly activate areas in the left half of the

map, while large diameter compounds activate glomeruli on the right. The

chemotopic arrangement is however by far not as clear as for molecular weight.

The KierFlex descriptor, an index for molecular flexibility defined by Hall
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and Kier (1991), provides a third example. We could not detect a clear chemo-

topic representation in our maps (Figure 3.5C).

It must be noted that the distributions shown in Figure 3.5 vary with the

threshold that is applied to determine glomerular activation. Too low a thresh-

old causes the median descriptor values to fluctuate, because then compounds

with low activation also contribute to the calculation of the median, possibly

introducing noise in the calculation. Hence, the lower the threshold, the closer

the descriptor value assigned to a glomerulus get to the real median of descrip-

tors. Since it is difficult to estimate the correct threshold algorithmically, we

chose the threshold manually, taking care not to introduce artifacts that may

lead to an overestimation of the chemotopic effect.

The validity of the results is also determined by the diversity of the odorant

set, in particular on the question if it is representative for Drosophila’s olfactory

space. The odorant set we used here offers a large variety of chemical classes,

but there is no objective means to quantify if it provides a representative sam-

ple of the fruit fly’s olfactory space.

3.4 Conclusion

We developed SOMMER to train and visualize SOMs of arbitrary topology,

and produced mappings of Drosophila’s antennal lobe on regular topologies.

These mappings can be used to provide two-dimensional images of glomerular

activation in response to an odorant. Moreover, the topological mapping of

the antennal lobe onto the two-dimensional plane allowed us to observe that

some chemical feature such as molecular weight and diameter appeared to be

represented in a chemotopic way on parts of this neural structure.
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Chapter 4

A novel method for

processing and classification

of chemical data inspired by

insect olfaction

The chemical sense of insects has evolved to encode and classify odorants.

Thus, the neural circuits in their olfactory system are likely to implement an

efficient method for coding, processing and classification of chemical informa-

tion. In this chapter, we describe a method to process molecular descriptors

and classify molecules which is based on neurocomputational principles ob-

served in olfactory systems.

4.1 Background

The mechanisms that enable olfactory discrimination are remarkably similar

across species, and even phyla (Hildebrand and Shepherd, 1997; Firestein, 2001).
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Several principles of organization hold in insects as well as in vertebrates. One

such principle is that each primary olfactory sensory neuron (OSN) specifically

expresses one type of olfactory receptor (OR), as has been demonstrated e.g.

in mice (Chess et al., 1994; Lomvardas et al., 2006) and in Drosophila (Couto

et al., 2005; Fishilevich and Vosshall, 2005), although exceptions to this rule

exist (Mombaerts, 2004; Goldman et al., 2005). Notably, ORs are seven-trans-

membrane G-protein coupled receptors (GPCRs), and state the largest genomic

family of GPCRs (Buck and Axel, 1991; Mombaerts, 1999; Gao and Chess, 1999;

Clyne et al., 1999).

Araneda et al. (2000) were the first to define ligand selectivity of an OR by

the usage of medicinal chemistry techniques. Their findings for the rat I7 re-

ceptor have been supplemented by additional studies in vertebrates (Araneda

et al., 2004; Mori et al., 2006) and insects (de Bruyne et al., 2001; Stensmyr et al.,

2003; Hallem and Carlson, 2006), and even in human cells in vitro (Shirokova

et al., 2005). A general result of those studies is that one odorant typically

activates a number of different ORs, while each OR has rather broad ligand

selectivity.

The results we present in chapter 2 also indicated that each receptor ap-

pears to analyze a specific part of chemical space, which can be described as

a specific combination of features. More abstractly put, each receptor samples

a certain region of chemical space. For example, the most potent ligands for

the ab3A receptor shared an ester group and carbon chain of length inside a

certain interval. In addition, the fact that we were able to develop a predictive

model for some ORs using the responses of the other ORs suggested that the

OR responses correlate to some extent.

Another characteristic of olfactory systems is that OSNs expressing a spe-

cific receptor make synaptic contacts with a defined subset of second-order

projection neurons in the antennal lobe in Drosophila (Korsching, 2002; Keller

and Vosshall, 2003), resp. mitral cells in the olfactory bulb in mice and zebrafish

(Korsching, 2001). These connections are formed in spatially discrete areas, the
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glomeruli.

It has long been speculated (and in part also shown) that the distribution

of glomeruli in the insect antennal lobe and the vertebrate olfactory bulb is or-

dered such that receptors preferring ligands with similar chemical properties

project to nearby glomeruli (Friedrich and Korsching, 1997; Uchida et al., 2000;

Meister and Bonhoeffer, 2001; Couto et al., 2005; Johnson et al., 2005). There is

some evidence that the distance of glomeruli correlates with the distance be-

tween their genomic sequences (Couto et al., 2005). Further, it has been demon-

strated that receptor sequence similarity at least in some cases correlates with

the chemical properties of preferred ligands (Schuffenhauer et al., 2003; Kra-

tochwil et al., 2005; Keiser et al., 2007).

The chemotopic organization of the secondary structure can be exploited

in computational processes. For example, the “contrast” between neighbor-

ing glomeruli could be enhanced by lateral inhibition (Cleland and Linster,

2005). In addition, results from a computational study by Linster et al. (2005)

demonstrated that inhibition based on response correlation rather than spatial

separation performs better at explaining the transformation that occurs in the

antennal lobe.

From the secondary structures, olfactory information is passed on to higher

brain areas. In mammals, mitral cells from the OB form highly overlapping

projections in the piriform cortex (Zou et al., 2001). Similarly, projection neu-

rons in Drosophila’s AL send their axons to regions in the lateral horn and the

mushroom bodies (Marin et al., 2002; Wong et al., 2002). The lateral horn and

the mushroom bodies as well as the piriform cortex receive input from all sen-

sory modalities (Heisenberg, 1998; Roesch et al., 2007). Thus, all information is

present here to assign a perceptual quality to a chemical stimulus.

Upon these parallels in organization of neural connectivity, the question

arises whether this architecture has properties that make it superior to other

coding strategies for chemical information.
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4.1.1 A simplified computational model

In a simplified approach, insect as well as vertebrate olfactory systems can be

subdivided into three stages of functional organization: In the first stage, OSNs

encode the stimulus features into neuronal signals. The second stage decorre-

lates these signals, optimizing stimulus representation. In the third stage these

representations (or patterns) are associated with perceptual qualities.

Here, we present a computational model of information processing in the

olfactory system that follows this design. By implementing the process of odor

quality perception as a machine learning process, we analyze the impact of

this three-step architecture on the accuracy of scent quality prediction from

molecular structure.

4.2 Methods and data

4.2.1 Source data

The chemical space for this experiment was defined by a set of 836 odorants

from the 2004 Sigma-Aldrich Flavors and Fragrances catalog (Sigma-Aldrich,

2004). In the “organoleptic properties” section of the catalog, each of the

odorants therein is assigned a various number scent qualities, such as ‘allia-

ceous’, ‘fruity’, ‘floral’, including subclasses such as ‘floral (Hyacinth)’, ‘fruity (Ba-

nana)’ and the like. One odorant can have more than one scent annotation, e.g.

(1R)-(-)-Myrtenol is annotated as smelling ‘campherous’, ‘medicinal’, ‘minty’ and

‘woody’, while ethyl 3-hydroxyhexanoate has notes of ‘citrus’, ‘citrus (other)’,

‘fruity’, ‘fruity (Grape)’, ‘fruity (Pineapple)’ and ‘smoky’. After removing scents

that occur less than five times in the data set, we yielded a total of 66 scent

qualities.
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4.2.2 Descriptor calculation

Molecules and their odor components were extracted from the Sigma-Aldrich

Flavors and Fragrances catalog 2004. Using their accession numbers, all com-

pounds were carefully checked for correctness with the machine-readable form

of the Sigma catalog. Three-dimensional molecular models were obtained with

CORINA (Molecular Networks, Erlangen, Germany), using one conformer per

molecule. Partial charges were computed using MOE version 2005.06 (Chem-

ical Computing Group, Montreal, Canada) using the MMFF94x force field (a

modified version of MMFF94s (Halgren, 1999)). Prior to descriptor calcula-

tion, we performed an additional energy minimization using MOE and the

MMFF94x force field, stopping at a gradient of 10−4. Descriptors were cal-

culated using MOE. We used all available two-dimensional (2D) descriptors,

resulting in a 184-dimensional descriptor space.

Although only using 2D descriptors, we calculated the three-dimensional

models because a molecules’ conformation affects the distribution of partial

charges, which is relevant for some 2D descriptors.

4.2.3 SOM training

We used SOMMER for SOM training (Schmuker et al., 2007, cf. chapter 3). The

molecular descriptors were autoscaled (i.e. scaled to unit variance and zero

mean) prior to SOM training. We trained toroidal SOMs with 12× 15, 8× 12,

5 × 7, 1 × 4 and 1 × 2 units, respectively. Note that the largest representa-

tion has approximately the same dimensionality (i.e. 180) as the original 184-

dimensional descriptor set. Table 4.1 shows the parameters that we used for

SOM training for all variants except the 1× 2 SOM, for which we used maxi-

mal time tmax = 100 and a final neighborhood value σf = 0.5. During training,

the descriptor vectors were presented to the SOM in random sequence, one per

time step. The training algorithm is described in detail in section 3.2.1, on page

37f.
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Table 4.1: Parameters for SOM training.

Parameter Value

Distance Function Manhattan
tmax 70000
σi 5.0
σf 0.1
λi 0.7
λ f 0.01

4.2.4 Machine learning and performance assessment

We used the Naive Bayes classifier as implemented in the WEKA machine

learning suite (Witten and Frank, 2005) for all classification experiments. The

Naive Bayes classifier is a probabilistic classifier based on Bayes’ theorem.

Given a set of feature vectors F with known class adherence C, a conditional

model for class adherence can be formulated using Bayes’ theorem:

p(C|F) =
p(C)p(F|C)

p(F)
. (4.1)

Assuming all n elements fi, i = 1, . . . , n of the feature vector F are conditionally

independent, eq. 4.1 can be rewritten as

p(C|F) =
p(C) ∏

i
p( fi|C)

p(F)
. (4.2)

Probabilities were estimated assuming a normal distribution for the feature

vectors. In practice, the denominator is omitted because it does not depend on

C and hence is effectively constant.

Receiver-Operator Characteristic (ROC) curves were generated by arrang-

ing compounds by decreasing predicted probability of class adherence and cu-

mulatively calculating rates of false and true positives.

In all classification experiments, the classifier was trained 50 times using

5-fold crossvalidation (leading to a 80/20 data split for training and test data),

thus obtaining 50 probabilities for class adherence for each compound. Classi-
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fier performance was assessed as the median AUC value of all 50 crossvalida-

tion repetitions.

The assignment of scent is equivalent to a multi-label classification problem

if the perceptual qualities (e.g. ‘floral’ or ‘fruity (Banana)’) are treated as labels

that can be assigned to any odorant. Hence, we trained the classifier separately

for the 66 scent classes. In consequence, each of the 66 resulting classifiers

would only distinguish between e.g. ‘floral’ and not ‘floral’, or ‘fruity (Banana)’

and not ‘fruity (Banana)’.

4.3 Results

In this study, we present a computational model mimicking the neurocomputa-

tional principles found in the olfactory system and analyze the impact of these

principles on scent prediction from molecular structure.

4.3.1 Representing odorants as two-dimensional patterns

In the first step of the model the stimuli were encoded using “virtual recep-

tors”. Like olfactory receptors responding to ligands sharing similar properties

(cf. chapter 2), a virtual receptor will respond to ligands that occupy the same

region in chemical space. Figure 4.1A) illustrates the concept of the virtual re-

ceptor: the smaller the distance between an odorant and te virtual receptor in

descriptor space, the higher the activation of this virtual receptor will be.

In our model, chemical space was defined by 184 molecular descriptors.

Considering an array of n virtual receptors, each receptor has a position de-

scribed by a coordinate vector p in the m-dimensional descriptor space. The

response of a virtual receptor to an odorant should be the larger the smaller

the distance between odorant and receptor is. Hence, we defined the response

ri of the ith receptor (i = 1, 2, . . . , n) to an odorant s as

ri = 1− d(s, pi)− dmin

dmax − dmin
, (4.3)
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with pi the coordinates of the ith receptor, d(s, pi) the Manhattan distance (sum

of absolute coordinate differences) between s and pi, dmin and dmax the minimal

and maximal distance between any s and pi. Thus, ri = 0 if d(s, pi) is maximal

and ri = 1 if d(s, pi) is minimal.

The coordinates of the receptors should be chosen such that they cover all

relevant parts of chemical space. We used a Self-Organizing Map (SOM) to

arrange our virtual receptors in the 184-dimensional descriptor space. This

space was defined by the Sigma-Aldrich Flavors and Fragrances catalog (Sig-

ma-Aldrich, 2004), a collection of commercially available odorous compounds.

The neighborhood-preserving topological organization of the SOM naturally

leads to a chemotopic arrangement of its units, such that neighboring units are

more similar in their ligand characteristics than units that are more separated

in the SOM topology (Figure 4.1B). The pattern of activity can be arranged on a

two-dimensional rectangular plane according to the projection that is defined

by the SOM topology (Figure 4.1C).

Figure 4.1: Creation of virtual activity patterns: schematic.
A) A virtual receptor (gray disc) is defined as a point in chem-
ical space. Arrow color indicates the amount of activation
by an odorant (squares). B) Placement of virtual receptors
through training of an SOM; lines connecting receptors sym-
bolize neighborhood relationships in the SOM topology. C)
Projection of the activity pattern evoked by one odorant to a
two-dimensional rectangular plane according to the topological
arrangement of the receptors in the SOM. Each rectangle cor-
responds to one receptor, color indicates amount of activation
(see colorbar).

The SOMs we trained had toroidal architecture, and thus can be visualized

as two-dimensional grids. Figure 4.2 depicts two odorants (A: butyl pheny-
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lacetate, D: butyl levulinate) and the resulting activation patterns (Figure 4.2B

and E) for a 12× 15 SOM. Due to the toroidal grids, the upper and lower edges

of the patterns are connected, as are left and the right edges.

Figure 4.2: Two example odorants (A: butyl phenylac-
etate, D: butyl levulinate), their corresponding patterns before
correlation-based filtering (B and E) and after the filtering (C
and F). Red corresponds to maximal, blue to minimal activa-
tion.

Most of the patterns showed multiple ‘islands’ of high activation, thus most

odorants activated several units that are not necessarily neighbors on the SOM

grid. This reflects that the SOM corresponds to a manifold rather than a hy-

perplane in the descriptor space, i.e. it is ‘folded’ and not planar. In part, this

is certainly due to the toroidal structure of the SOM, but may also be a conse-

quence of the neighborhood structure in odorant space.

4.3.2 Transformation in the antennal lobe

In the scope of the model, the activation patterns correspond to activations of

glomeruli in the antennal lobe. Linster et al. (2005) suggested that processing

in the antennal lobe implements correlation-based lateral inhibition. That is, if

two glomeruli are activated by a highly overlapping set of ligands, they will in-

hibit each other’s response. This enforces a ‘winner takes most’-situation, such
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that the glomerulus with the stronger response will inhibit the response of the

weaker glomerulus, effectively making their output more dissimilar. The more

correlated the firing patterns of the two glomeruli are, the more pronounced

this effect will be.

To account for this, we computed the post-lobal pattern vector r′ from the

pre-lobal input vector r (cf. eq. 4.3) by equation 4.4

r′ = r− q
(

C · rT

n

)
, (4.4)

with n the number of virtual receptors, q an arbitrary weight and C a matrix

where Ci,j contained Pearson’s correlation coefficient between the responses

of the ith and jth receptor. In addition, all negative elements as well as all

elements on the diagonal of C were set to zero. Figure 4.2 C and F show the

post-lobal response patterns.

The most salient difference between the patterns is that there is less overall

activation. Also, the sites of highest activation remain unchanged (in the center

in Figure 4.2C and in the lower left in Figure 4.2F), while large portions of the

remaining pattern get sparser (i.e., show less activity).

In order to analyze the effect of receptor count, we trained SOMs of different

sizes ranging from 2 to 180 units. Figure 4.3 shows patterns from different

SOM sizes. With increasing resolution the peaks in the activation landscape

become more distinct. While the higher-dimensional patterns may be visually

more appealing, the question remains if they actually contain more information

about the stimulus than their lower-dimensional counterparts. We address this

issue in the next section.

4.3.3 Retrospective scent prediction from virtual receptor ac-

tivation patterns

We performed a retrospective scent prediction experiment in order to examine

the information content conveyed by the patterns. We used odor annotations to
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Figure 4.3: Activation patterns pro-
duced by (-)-Carvyl propionate for
different SOM sizes. Red corre-
sponds to maximal, blue to minimal
activation.

836 odorants from the 2004 Sigma-Aldrich Flavors and Fragrances catalog (Sig-

ma-Aldrich, 2004) as targets to train a Naive Bayes classifier.

After removing scents that occurred less than five times in the data set, we

obtained a total of 66 scent qualities. We trained the classifier separately for

each scent class, hence each of the 66 resulting classifiers would only distin-

guish between e.g. ‘smoky’ and not ‘smoky’, or ‘fruity (Banana)’ and not ‘fruity

(Banana)’. Of all scents, the ‘fruity’ annotation was most frequent, with 319 out

of the 836 compounds bearing this attribute.

The model has two free parameters that both affected classification perfor-

mance: the SOM size (i.e. receptor count) and q, the weight of correlational

inhibition (cf. eq. 4.4). To illustrate the impact of q, we trained the classifier

on ‘fruity’ scents, using the 12 × 15 patterns as input and varied q between

zero (i.e. no processing) and two. Figure 4.4A shows the distribution of ROC

curves for classification of ‘fruity’ scents from the 50 crossvalidation runs using

the patterns generated with the 12× 15 SOM layout. In both the best and the

worst cases (Figure 4.4B and C) classification was best for q = 2 (best Area-

Under-Curve (AUC) = 0.82, worst = 0.75, median = 0.79), followed by q = 1

(best AUC = 0.78, worst = 0.72, median = 0.75) and q = 0 (best AUC = 0.75,

worst = 0.68, median = 0.72). Although the q = 0 and q = 1 patterns yielded

similar classification power for low false-positive rates in the best case (Figure

4.4B), the filtered patterns yielded an overall better performance than the un-

filtered representations. In the worst case (Figure 4.4C) q = 2 and q = 1 were
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Figure 4.4: ROC curves for classification of the ’fruity’ scent
and 12× 15 SOM layout for unprocessed patterns (q = 0),
and patterns processed by correlational inhibition with q = 1
and q = 2. A) overlay of all ROC curves generated during
cross-validation, B) best ROC, C) worst ROC.

on par for small positive rates, with q = 2 yielding the higher total AUC.

This trend is also apparent when comparing classification performance for

all 66 scents against q and SOM architecture, as Figure 4.5 shows. We used the

median AUC from all crossvalidation runs as performance indicator. Gener-

ally, patterns generated with q = 2 outperformed q = 0 and q = 1 for almost

all architectures. For the 12× 15 representations, the median AUC values were

0.68 (q = 2), 0.65 (q = 1) and 0.63 (q = 0). These differences are significant

(Wilcoxon rank sum test, p < 10−7).

Performance also gradually decreased with dimensionality, but only 2× 5

and smaller representations significantly differ in their median AUC values

from the larger representations (Wilcoxon rank sum test, p < 0.05). Hence,

overall classification performance did not suffer from a reduction of dimen-

sionality by a factor of five.

4.3.4 Correlation-based vs. distance-based inhibition

As Linster et al. (2005) discuss, another plausible mechanism for lateral pro-

cessing in the antennal lobe is to organize interglomerular inhibition by dis-

tance. For comparison, we also analyzed the “classifyability” of scents (i.e. the

performance in retrospective screening) when using distance-based inhibition.
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Figure 4.5: Median AUC values for scent prediction using
unprocessed patterns (q = 0), and patterns processed by cor-
relational inhibition with q = 1 and q = 2. Ordinate truncated
to emphasize differences.

Similar to equation 4.4, we defined

r′ = r− q
(

D · rT

n

)
, (4.5)

with D the relative distance matrix. Di,j contains the relative distance between

the ith and jth SOM unit, calculated according to eq. 4.6:

Di,j = −1 · dtoro(i, j)− dtoro,min

dtoro,max − dtoro,min
, i 6= j , (4.6)

where dtoro denotes the euclidian distance on the toroidal surface on which the

SOM units are arranged, dtoro,min and dtoro,max the minimum and maximum dis-

tance. Thus, D is 1 where distance is minimal, and 0 where distance is maximal.

In addition, all elements on the diagonal of D were set to zero.

We compared median AUC values for scent prediction using patterns pro-

cessed by distance-based inhibition with predictions using correlation-based

inhibition for patterns. Figure 4.6 shows the results: there is virtually no in-

crease in prediction performance by distance-based processing. This some-

what surprising result strongly argues for the hypothesis that correlational in-
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hibition is a more effective mechanism to shape the input signals than distance-

based inhibition (Linster et al., 2005).
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Figure 4.6: Median AUC values for scent prediction using
patterns processed with distance-based inhibition, with q=1
and q=2. For comparison, AUC values for correlation-based
inhibition (q=2) are also given.

4.3.5 Analysis of decorrelation

In the introduction to this thesis, we mentioned that the antennal lobe is said

to decorrelate the receptor signals. In the present work, this decorrelation is

achieved through mutual inhibition between projection neurons that innervate

glomeruli with correlated response patterns. In order to quantify the amount of

decorrelation we calculated the residual correlation between virtual receptors

before and after correlational inhibition.

Figure 4.7 depicts correlation matrices indicating the residual correlation

between all virtual receptors. While in the unprocessed receptor responses

there was high residual correlation (Figure 4.7A, mean correlation = 0.38), it

gradually decreased with increasing q; For q = 1 the mean residual correlation

is 0.24 (Figure 4.7C), while it decreased to 0.02 for q = 2 (Figure 4.7E). The effect

of decorrelation can be observed more clearly in the histograms that depict the

distribution of correlation coefficients in the matrices (Figure 4.7B,D,F): The

62



50 100150

50

100

150

50 100150

50

100

150

50 100150

50

100

150

50 100150

50

100

150

−1 0 1 −1 0 1 −1 0 1 −1 0 1

A) C) E) G)

B) D) F) H)

−1

0

1
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tribution histograms (lower row) for virtual receptor responses
and PCA scores. A,B) q = 0, C,D) q = 1, E,F) q = 2,
G,H) PCA. Histograms have been scaled to identical maximum
count.

peak of the distribution shifts towards zero as q increases.

Figure 4.7G shows the residual correlation after applying Principal Com-

ponent Analysis (PCA) to the original descriptor data. PCA is frequently used

for dimensionality reduction prior to training machine-learning classifiers. The

dimensions produced by PCA are orthogonal and have no residual correlation,

which is illustrated by the single peak at zero for the correlation histogram in

Figure 4.7H.

PCA thus achieves maximum decorrelation on the data, but it is not clear

beforehand if the resulting patterns are also better suited for classification.

To investigate whether maximum decorrelation also corresponds to maximal

classification performance, we compared the classification performance of our

method with the performance that can be achieved using PCA for dimensional-

ity reduction on the original descriptor set. Figure 4.8 shows median AUC val-

ues from retrospective classification using patterns processed with q = 2 and

using the first n principal components of the original dataset that explained

most variance. We chose the dimensionality of the reduced data to match the

dimensionality of the patterns.

The correlation-filtered patterns yielded higher AUC values for higher di-
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Figure 4.8: Median AUC values for scent prediction with
correlation-filtered patterns and PCA-transformed representa-
tions of the original feature space.

mensionalities (max: 0.68 using 180 dimensions), while the principal compo-

nents seemed to work best for low dimensionalities (max: 0.67 using 4 di-

mensions). The difference between the AUC values is significant (p < 0.05,

Wilcoxon rank sum test). A possible explanation for this behavior is that when

using PCA, the dimensions explaining less variance introduce noise. The Naive

Bayes classifier has no means to distinguish “noise” variables from those that

explain a high amount of variance, and thus produces inaccurate results.

Notably, when using the original 184-dimensional descriptor set without

dimensionality reduction to train the classifier, we also obtained a median AUC

value of 0.67 (data not shown). In this case, despite its high dimensionality, the

classifyability of the data did not suffer.

In conclusion, maximum decorrelation by PCA does not necessarily in-

crease classification performance. PCA may be the method of choice for data

preprocessing if dimensionality reduction is important, e.g. if computational

resources are limited, but care must be taken not to use too many principle

components for data representation. In real brains, due to their highly par-

allel architecture data dimensionality may not be the limiting factor. Rather,

robustness to noise and capacity of the code may be more important. The lat-
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ter is provided by the higher dimensionality of the proposed coding scheme,

while robustness is increased by the residual redundancy due to non-absolute

decorrelation.

4.3.6 Application to pharmaceutical data

Pattern recognition and -classification on chemical data is not only important

for studying olfaction, but also for virtual screening in pharmaceutical appli-

cations. In this process, regression models or machine-learning classifiers are

trained on activity data for a certain pharmaceutical target in order to predict

the activity of novel compounds.

We tested if the method we propose is also suited for pharmaceutical data.

Chemical space was given by the COBRA database (Schneider and Schneider,

2003), version 6.1. In analogy to the procedure stated above, we placed virtual

receptors by training SOMs of various dimensionality, using the same param-

eters as for the Flavors & Fragrances data (cf. Table 4.1). Virtual receptor pat-

terns were derived following equation 4.3 and processed according to equation

4.4. Naive Bayes classifiers were trained on the patterns using pharmaceutical

activity at 115 targets (e.g. Cyclooxygenase 2, Thrombin, mGluR5) and their

superclasses (e.g. Enzyme, GPCRs, Ion Channels). We repeated 5-fold crossval-

idation only 10 times (in contrast to 50 times above) in order to save computing

time. For comparison, we also trained the classifiers on the original descriptors

processed by PCA.

Figure 4.9 shows the median AUC values for the pharmaceutical data. The

results slightly differ from those obtained for the Flavors & Fragrances catalog.

First, overall performance on the COBRA data set was better than on the Fla-

vors & Fragrances data. Second, principal components outperformed the virtual

activation patterns in terms of classification performance. Third, the patterns

processed with q = 2 were not always performing best.

The first two points may be a consequence of the fact that many of the orig-

inal descriptors we employed have been optimized towards good modeling
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Figure 4.9: Median AUC values for the classification of phar-
maceutical targets.

properties for pharmaceutics. Odorants are typically smaller than pharmaceu-

tics and have considerably different chemical properties, their volatility being

probably among the most obvious. Moreover, the chemistry behind both sub-

stance classes is fairly different (Grabowski and Schneider, 2007): Many phar-

maceutical compounds have been tuned towards easy synthesizability on an

industrial scale, while odorants typically are natural products, emerging as

secondary metabolites or decay products. Hence, the gap in classification per-

formance compared to odorant data is not surprising.

The fact that patterns processed with q = 2 were not always classified best

requires a more thorough look at the results. Considering patterns with a di-

mensionality of up to 2× 10, lower settings of q did not perform better than

patterns processed with q = 2. Only for higher dimensionalities, the patterns

processed with q = 1 performed better than those with q = 2. An analysis

of the filtered patterns revealed that for q = 2 and higher dimensionalities

many virtual receptor responses got set to zero, because the subtractive term

in equation 4.4 became equal or larger than ri (data not shown). Thus, only

those virtual receptor signals with highest activation ‘survived’ the functional

inhibition process, effectively replacing the soft winner-takes-most situation to

a hard winner-takes-all one. Clearly, this result points out the need for q to be
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adjusted in order to obtain best results. It also shows that there is not one opti-

mal setting of q, but rather that this optimum depends on the application and

the data.

4.4 Discussion

Scope of the model

The processing scheme we present here provides a very simplified model of

neural computation in the olfactory system. Our focus was on providing a

framework that enabled us to study certain aspects of computational princi-

ples, instead of trying to build a biologically accurate simulation of the olfac-

tory system. We tried to keep the simulation overhead as small as possible,

so that the essence of the processing strategies would stay obvious. More re-

alistic models, in terms of biological plausibility, are particularly useful when

one tries to answer more biological questions, like e.g. Huerta et al. (2004) and

Nowotny et al. (2005) did.

Classifier choice

Although other classifiers, such as Artificial Neural Networks or Associative

Memory classifiers may appear a more natural choice for modeling brain func-

tions (Rolls and Treves, 1997; Haberly, 2001), the Naive Bayes classifier has the

advantage that there are no free parameters that can affect the prediction qual-

ity. Despite the fact that the “naive” assumption of independence between fea-

tures is often inaccurate, this classifier has proven to work well in real-world

learning paradigms (Bender et al., 2004). Besides, it has been demonstrated

how Bayesian classifiers can be implemented in neural structures (Barber et al.,

2003).
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Performance of scent prediction

The pure retrospective character of this study makes it difficult to assert how

well scent prediction would work in “real life”. For example, although cross-

validation and multiple repetitions were used to assess prediction performance,

prospective results may be worse than indicated by this study, especially when

different scent annotation protocols were used for the training data. Predic-

tions will be best for data from the same domain/source. For new sources,

training data from that domain would be required to achieve best results.

The quality of the training data may also be an issue, since the protocol

for scent assignment in our data source is not known (and therefore not repro-

ducible). Only vague reports exist on how the labels were derived (Zarzo and

Stanton, 2006). Further, there is also no guarantee for the reliability of the label-

ing, e.g. it is not clear if all scent notes are given for every odorant. Hence, it is

possible that the data set contains a certain amount of false-negatives. Even us-

ing an ideal classifier, i.e. one that predicts the scent of any odorant with 100%

accuracy, these odorants would show up as false-positives, since not all scent

notes which the classifier (correctly!) predicts are annotated.

Another point that must be noted here is that we trained only one SOM

per architecture. For proper crossvalidation, this stage should also be repeated

on separate data folds. This would require the introduction of an additional

cross-validation layer wrapped around the derivation of virtual activity pat-

terns and classifier training. The high computational requirements for this task

prohibited this systematic analysis.

In consequence, we use the prediction performance as a relative measure to

compare different mechanisms for processing in the antennal lobe. The results

should not be interpreted as providing an actual prediction method for scent.

This may change with the availability of high-quality data, and means of ob-

jective testing of the predictions. Then, solid conclusions on the performance

of scent prediction can be made.
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Outlook

The q factor showed to have a large impact on the outcome of the correlational

filtering step, with classifyability of the patterns improving for rising q, up

to a certain level. Finding optimal values of q for a given data set may be

a worthwhile topic for further research. Possible approaches include the use

of meta-optimization techniques to derive q empirically, as demonstrated by

Meissner et al. (2006) for the number of hidden neurons in an Artificial Neural

Network, or its estimation from statistical properties of the data, like variance

or cross-correlation.

Among the questions we did not address here are the effects of odorant

concentration and combinations of odorants (mixtures). For both, we can sug-

gest straightforward implementations: Odorant concentration could be imple-

mented via “gain control” of the activation patterns, i.e. multiplication of the

pattern with a concentration-dependent scalar, while odorant mixtures could

be represented by additive or even nonlinear combinations of their activation

patterns. The effects of processing in the virtual antennal lobe on those ex-

tensions as well as their impact on classification power provide a tantalizing

prospect for future research.

4.5 Conclusion

We have presented a computational framework that implemented processing

principles observed in olfactory systems. This method effectively captured rel-

evant properties of the original data that allowed a machine-learning classifier

to learn odorant classification. Besides reducing dimensionality of the origi-

nal data, it also exhibited robustness against overdetermined representations,

a situation where principal components of the original data failed. In addition,

the application of this framework is not limited to the olfactory domain, but

can also be used for virtual screening in a pharmaceutical compound database.
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Chapter 5

Conclusion and outlook

In this work, we aimed at analyzing the coding and processing principles in the

olfactory system in order to gain knowledge on efficient processing of chemical

information. The highly interdisciplinary character of this goal is reflected in

the methods we employed to reach it, which combined cheminformatics with

neurobiology and machine learning.

Functional characterization of olfactory receptors

Olfactory receptors work at the interface between the chemical world of volatile

molecules and the perception of scent in the brain. Their main purpose is to

translate chemical space into information that can be processed by neural cir-

cuits. Assuming that these receptors have evolved to cope with this task, the

analysis of their coding strategy promises to yield valuable insight in how to

encode chemical information in an efficient way.

In chapter 2, we analyzed olfactory coding by modeling responses of pri-

mary olfactory neurons to small molecules using a large set of physicochemi-

cal molecular descriptors and Artificial Neural Networks. We then tested these

models by recording receptor neuron responses to a new set of odorants and

successfully predicted the responses of five out of seven receptor neurons. Cor-

relation coefficients ranged from 0.66 to 0.85, demonstrating the applicability

71



of our approach for the analysis of olfactory receptor activation data.

In addition, we demonstrated that the molecular descriptors which are best

suited for response prediction vary for different receptor neurons, implying

that each receptor neuron detects a different aspect of chemical space. The

chemical meaning of these descriptors helps understand structure-response

relationships for olfactory receptors and their “receptive fields”. Finally, we

demonstrated that receptor responses themselves can be used as descriptors in

a predictive model of neuron activation, indicating that olfactory receptors en-

code chemical space in a way that can be exploited to predict receptor-ligand

affinities. Moreover, this result suggests that coding at the receptor level is not

decorrelated, but partly redundant.

Future research in this area will certainly benefit from a growing amount

of olfactory receptor response data. The accuracy of both the preferred ligand

features and activation predictions is likely to increase when receptor neuron

response data for a greater variety of odorants becomes available. A greater

data basis may also allow for quantitative models of receptor neuron activa-

tion.

Modeling the insect antennal lobe with self-organizing maps

One of the most intriguing features of the olfactory system lies in the stereo-

typic anatomical organization of the second processing stage, namely the an-

tennal lobe in insects and the olfactory bulb in vertebrates. Several lines of evi-

dence suggest that it implements a chemotopic spatial ordering, in that similar

chemotypes activate nearby regions in this neural structure. This phenomenon

provides an intriguing possibility to investigate how chemical similarity is de-

fined in nature.

Our goal was to investigate the chemotopic organization of the antennal

lobe with Self-Organizing Maps (SOMs). SOMs provide a topological map-

ping of the input data, which makes them particularly useful in this scenario.

They enable straightforward, algorithmically well defined and reproducible
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projection of the three-dimensional arrangement of glomeruli onto the two-

dimensional plane.

For this purpose we developed SOMMER, the Self-Organizing Map Maker

for Education and Research. SOMMER provides rectangular, toroidal, cubic

and spherical SOM topologies and is a valuable, multi-purpose research tool

to create SOMs from all kinds of data. In chapter 3 we provide an overview on

the functionality that SOMMER provides and demonstrate the use of SOMs to

produce two- and three-dimensional mappings of Drosophila’s antennal lobe.

We used the two-dimensional projections to derive maps of glomerular re-

sponses to odorants. In those activation maps, each glomerulus was assigned

the spike rate response of the receptor neuron that states its main input. We

produced such maps for receptor neuron responses to a set of 110 odorants.

These maps enabled us to discern the preferred chemical features that are

represented in a glomerulus. We calculated a set of 184 physicochemical de-

scriptors for each of the odorants and derived the median value of each de-

scriptor in each glomerulus, taking into account all odorants that activate this

glomerulus. Since each descriptor corresponds to a molecular property, we ob-

tained a map that reflects the distribution of molecular features on the antennal

lobe.

The analysis of this map revealed a clear trend for a chemotopic representa-

tion of molecular weight. A chemotopic ordering was also observed for molec-

ular diameter (which is related to chain length), albeit to a lower extent. In

contrast, no ordering was apparent for molecular flexibility.

The SOMMER application can provide the basis for several subsequent re-

search projects. It is publicly available in binary and source code and can easily

be adapted to current research needs. For example, arbitrary topologies can

easily be implemented in SOMMER, making it an extremely versatile research

tool. In this work we preferred the two-dimensional rectangular projection,

but it will be interesting to investigate how SOMMER’s spherical SOM topol-

ogy performs in projections of the antennal lobe and other neural structures.
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A novel method for processing and classification of chemical data inspired

by insect olfaction

Chapter 4 provides a simple computational model for the entire olfactory sys-

tem that builds upon the findings and the software described in chapters 2 and

3. Our goal in this part of the thesis was to design a method to process molecu-

lar descriptors and classify molecules, based on neurocomputational principles

observed in the olfactory system.

In the framework we presented, we mimicked the three-stage architecture

of the olfactory system and the processing schemes that are realized therein.

Our main focus hereby was on providing a model that enabled us to study cer-

tain aspects of computational principles, rather than providing a biologically

accurate simulation.

The first stage in olfactory processing is modeled by “virtual receptors”,

which are defined as discrete points in odorant space. The odorant space is set

up by 184 physicochemical descriptors that reflect the chemical features of the

odorants. The magnitude of the response of a virtual receptor to an odorant

depends on their distance in the 184-dimensional odorant space: The closer

the odorant is to the receptor, the higher the response.

The positions of virtual receptors were derived by training an SOM in odor-

ant space. The coordinates of the virtual receptors were then obtained from the

prototype vectors of the trained SOM. Since SOMs preserve the local topology

of the input space, we obtained a chemotopic representation of the odorant

space, much like the one observed in the antennal lobe or the olfactory bulb.

We implemented the decorrelation step in the antennal lobe as correlation-

based lateral inhibition, where the response from one receptor is decreased by

the weighted average of all other responses, where the weight is defined by

the amount of their correlation. This creates a winner-takes-most situation,

where the competition between two receptor signals is strongest if they corre-

late most. In addition, we introduced a scaling factor q which allowed us to

regulate the overall weight of correlational inhibition.
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The last step in our simplified model of olfactory computation consisted

in assigning a perceptual quality to the input. We achieved this by training a

Naive Bayes classifier on the odorant’s annotated scents using the processed

signals as input.

We tested the performance of our model by retrospective screening of an

odorant database. Prediction accuracy was quantified by the Area Under the

receiver-operating-characteristic Curve (AUC). The results showed that the rep-

resentation of chemical information in our model is suitable to perform this

task. We achieved median AUC values over all scent qualities of up to 0.72

for the unprocessed virtual activation patterns, depending on the number of

virtual receptors.

Processing the patterns by correlational inhibition had a favorable impact

on classification performance: For example, for the largest number of virtual

receptors, the median AUC values increased to 0.75 for q = 1 and 0.79 for

q = 2. The same trend could be observed for smaller numbers of receptors.

We demonstrated that this processing method effectively performs a “mod-

erate decorrelation” of the input patterns, in that there remained residual cor-

relation between some dimensions of the output. This is in contrast to the re-

sult one obtains from methods like principal component analysis (PCA), which

produce uncorrelated output.

A comparison of classification performance between fully decorrelated pat-

terns obtained with PCA and moderately decorrelated patterns generated by

correlational inhibition revealed that both methods reach similar AUC values,

although for different dimensionalities. Patterns transformed by PCA per-

formed best for low dimensionalities, while the performance of those trans-

formed with correlational inhibition reached their maximum performance for

higher dimensionalities. Moreover, while the performance of the PCA-trans-

formed patterns decreased quickly with increasing dimensionality, those pro-

cessed with correlational inhibition seem to saturate in their performance when

dimensionality was increased. This result indicates that this processing method
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is more robust against overdetermined data sets, and particularly effective

when data redundancy and robustness is preferred over low dimensionality,

like for environments such as the brain where data is processed in a highly

parallel manner.

Finally, we demonstrated that the application of this processing method is

not limited to the olfactory domain by performing virtual screening in a phar-

maceutical database.

Since the weight of correlational inhibition (expressed by the factor q) cru-

cially influences the outcome of the processing scheme, finding an optimal set-

ting for it may provide one starting point for future research. Another direction

may be to incorporate odor concentration and mixtures of odors into the anal-

ysis.
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Appendix

A.1 Molecular descriptors used for SAR

Table A.1 explains the meaning of the descriptors (adapted from the MOE user

manual (Chemical Computing Group, Montreal, Canada)). Some descriptors

occur in several variants, depending on the theory or algorithm underlying

their calculation. For example, charge distribution for descriptors prefixed

with Q was calculated using the MMFF94x force-field (Halgren, 1999), while

those prefixed with PEOE are based on calculations with the Partial Equaliza-

tion of Orbital Electronegativities (PEOE) method proposed by Gasteiger and

Marsili (1980).

The following conventions are used in the table: n: the number of atoms

(not counting hydrogens); m: the number of bonds (except bonds to hydrogen

atoms); a: the sum of (ri/rc − 1) where ri is the covalent radius of atom i, and

rc is the covalent radius of a carbon atom; p2: the number of paths of length 2

and p3 the number of paths of length 3 in the molecular graph.
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Table A.1: Molecular descriptors and their meaning.

Descriptor Meaning

AM1 HOMO Energy (eV) of the Highest Occupied Molecular Orbital

calculated using the MOPAC AM1 Hamiltonian (Stewart,

1993).

AM1 IP Ionization potential (kcal/mol) calculated using the AM1

Hamiltonian (Stewart, 1993).

AM1 LUMO Energy (eV) of the Lowest Unoccupied Molecular Orbital

calculated using the MOPAC AM1 Hamiltonian (Stewart,

1993).

E Value of the potential energy.

E str Bond stretch potential energy.

FASA+ Fractional ASA+ calculated as ASA+ / ASA.

FASA- Fractional ASA- calculated as ASA- / ASA.

FCASA+ Fractional CASA+ calculated as CASA+ / ASA.

FCASA- Fractional CASA- calculated as CASA- / ASA.

Kier2 Second kappa shape index: (n − 1)2/m2 (Hall and Kier,

1991).

Kier3 Third kappa shape index: (n− 1) · (n− 3)2/p2
3 for odd n,

and (n− 3) · (n− 2)2/p2
3 for even n (Hall and Kier, 1991).

KierA1 First alpha modified shape index: s · (s − 1)2/m2 where

s = n + a (Hall and Kier, 1991).

KierA2 Second alpha modified shape index: s · (s− 1)2/m2 where

s = n + a (Hall and Kier, 1991).

KierA3 Third alpha modified shape index: (n − 1) · (n − 3)2/p2
3

for odd n, and (n− 3) · (n− 2)2/p2
3 for even n where s =

n + a (Hall and Kier, 1991).

KierFlex Kier molecular flexibility index: (KierA1)·(KierA2)/n

(Hall and Kier, 1991)

MNDO HF Heat of formation (kcal/mol) calculated using the MNDO

Hamiltonian (Stewart, 1993).
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Table A.1: Molecular descriptors and their meaning (cont.).

Descriptor Meaning

MNDO HOMO Energy (eV) of the Highest Occupied Molecular Orbital

calculated using the MNDO Hamiltonian (Stewart, 1993).

MNDO IP Ionization potential (kcal/mol) calculated using the

MNDO Hamiltonian (Stewart, 1993).

PEOE PC+ Total positive partial charge: the sum of the positive par-

tial charges

{Q, PEOE} RPC+ Relative positive partial charge: the largest positive qi di-

vided by the sum of the positive qi

{Q, PEOE} RPC- Relative negative partial charge: the smallest negative qi

divided by the sum of the negative qi

{Q, PEOE} VSA+0 Sum of vi where qi is in the range [0.00,0.05)

{Q, PEOE} VSA+5 Sum of per-atom van der Waals surface vi where qi is in

the range [0.25,0.30)

{Q, PEOE} VSA-1 Sum of vi where qi is in the range [-0.10,-0.05)

{Q, PEOE} VSA FHYD Fractional hydrophobic van der Waals surface area

{Q, PEOE} VSA FNEG Fractional negative van der Waals surface area

{Q, PEOE} VSA FPNEG Fractional negative polar van der Waals surface area

{Q, PEOE} VSA FPOL Fractional polar van der Waals surface area

{Q, PEOE} VSA FPOS Fractional positive van der Waals surface area

{Q, PEOE} VSA FPPOS Fractional positive polar van der Waals surface area

{Q, PEOE} VSA HYD Total hydrophobic van der Waals surface area

{Q, PEOE} VSA NEG Total negative van der Waals surface area

{Q, PEOE} VSA PNEG Total negative polar van der Waals surface area

{Q, PEOE} VSA POL Total polar van der Waals surface area

{Q, PEOE} VSA POS Total positive van der Waals surface area

{Q, PEOE} VSA PPOS Total positive polar van der Waals surface area

PM3 HOMO Energy (eV) of the Highest Occupied Molecular Orbital

calculated using the PM3 Hamiltonian (Stewart, 1993).
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Table A.1: Molecular descriptors and their meaning (cont.).

Descriptor Meaning

PM3 IP Ionization potential (kcal/mol) calculated using the PM3

Hamiltonian (Stewart, 1993).

PM3 LUMO Energy (eV) of the Lowest Unoccupied Molecular Orbital

calculated using the PM3 Hamiltonian (Stewart, 1993).

RPC+ Same as Q RPC+

SMR Molecular refractivity, calculated by an atomic contribu-

tion model (Wildman and Crippen, 1999)

SMR VSA0 Sum of the approximate accessible van der Waals surface

area vi such that the contribution to Molar Refractivity for

atom i (Ri) is in [0,0.11]

SMR VSA5 Sum of vi such that Ri is in (0.15,0.20]

SMR VSA7 Sum of vi such that Ri > 0.56

SlogP Log of the octanol/water partition coefficient, calculated

by an atomic contribution model (Wildman and Crippen,

1999)

SlogP VSA1 Sum of vi such that the contribution to logP(o/w) for

atom i (Li) is in (-0.4,-0.2]

SlogP VSA2 Sum of vi such that Li is in (-0.2,0]

SlogP VSA4 Sum of vi such that Li is in (0.1,0.15]

SlogP VSA7 Sum of vi such that Li is in (0.25,0.30]

SlogP VSA8 Sum of vi such that Li is in (0.30,0.40]

VDistEq If m is the sum of the distance matrix entries then VdistEq

is defined to be the sum of log2m− pilog2 pi/m where pi

is the number of distance matrix entries equal to i

VDistMa If m is the sum of the distance matrix entries

then VDistMa is defined to be the sum of log2m −
Dijlog2Dij/m over all i and j.
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Table A.1: Molecular descriptors and their meaning (cont.).

Descriptor Meaning

a ICM Atom information content (mean). Let ni be the number

of occurrences of atomic number i in the molecule. Let

pi = ni/n where n is the sum of the ni. The value of

a ICM is the negative of the sum over all i of pilogpi.

a IC Atom information content (total). This is calculated to be

a ICM times n.

a aro Number of aromatic atoms

a hyd Number of hydrophobic atoms

a nC Number of carbon atoms

a nH Number of hydrogen atoms

a nO Number of oxygen atoms

apol Sum of the atomic polarizabilities, with polarizabilities

taken from (CRC, 1994)

b 1rotN Number of rotatable single bonds (not including conju-

gated single bonds, such as petide and ester bonds)

b 1rotR Fraction of rotatable single bonds

b ar Number of aromatic bonds

b rotN Number of rotatable bonds

b rotR Fraction of rotatable bonds

balabanJ Balaban’s connectivity topological index (Balaban, 1982)

bpol Sum of the absolute value of the difference between

atomic polarizabilities of all bonded atoms in the

molecule (including implicit hydrogens) with polarizabil-

ities taken from (CRC, 1994)

chi0 C Carbon connectivity index (order 0). This is calculated as

the sum of 1/
√

di, with di the number of bonded non-

hydrogen atoms, over all carbon atoms i with di > 0
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Table A.1: Molecular descriptors and their meaning (cont.).

Descriptor Meaning

chi0v C Carbon valence connectivity index (order 0). This is cal-

culated as the sum of 1/
√

vi over all carbon atoms i with

vi > 0, with vi = (pi − hi)/(Zi − pi − 1) where pi is the

number of s and p valence electrons and Zi the atomic

number of atom i.

chi1 Atomic connectivity index (order 1) from (Hall and Kier,

1991) and (Hall and Kier, 1977). This is calculated as the

sum of 1/
√

didj over all bonds between heavy atoms i

and j where i < j

chi1 C Carbon connectivity index (order 1). This is calculated as

the sum of 1/
√

didj over all bonds between carbon atoms

i and j where i < j

chi1v Atomic valence connectivity index (order 1) from (Hall

and Kier, 1991) and (Hall and Kier, 1977). This is calcu-

lated as the sum of 1/√vivj over all bonds between heavy

atoms i and j where i < j

chi1v C Carbon valence connectivity index (order 1). This is cal-

culated as the sum of 1/√vivj over all bonds between car-

bon atoms i and j where i < j

dens Mass density: molecular weight divided by van der Waals

volume (calculated using a grid approximation with spac-

ing 0.75 Å)

density Molecular mass density: Weight divided by the van der

Waals volume (calculated using a connection table ap-

proximation)

diameter Largest value in the distance matrix (Petitjean, 1992).
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Table A.1: Molecular descriptors and their meaning (cont.).

Descriptor Meaning

glob Globularity, or inverse condition number (smallest eigen-

value divided by the largest eigenvalue) of the covariance

matrix of atomic coordinates. A value of 1 indicates a

perfect sphere while a value of 0 indicates a two- or one-

dimensional object.

logP(o/w) Log of the octanol/water partition coefficient, calculated

from a linear atom type model implemented in MOE

mr Molecular refractivity, calculated from an 11 descriptor

linear model implemented in MOE

petitjean Value of (diameter-radius) / diameter, with diameter the

largest value in the distance matrix and radius defined as

follows: If ri is the largest matrix entry in row i of the

distance matrix D, then radius is defined as the smallest

of the ri (Petitjean, 1992)

petitjeanSC Petitjean graph Shape Coeffecient as defined in (Petitjean,

1992): (diameter-radius) / radius

rgyr Radius of gyration

std dim1 Standard dimension 1: the square root of the largest

eigenvalue of the covariance matrix of the atomic coordi-

nates. A standard dimension is equivalent to the standard

deviation along a principal component axis

std dim2 Standard dimension 2: the square root of the second

largest eigenvalue of the covariance matrix of the atomic

coordinates

std dim3 Standard dimension 3: the square root of the third largest

eigenvalue of the covariance matrix of the atomic coordi-

nates

83



Table A.1: Molecular descriptors and their meaning (cont.).

Descriptor Meaning

vsa acc Approximation to the sum of VDW surface areas of pure

hydrogen bond acceptors (not counting acidic atoms and

atoms that are both hydrogen bond donors and acceptors

such as -OH)

Zagreb Zagreb index: the sum of d2
i over all heavy atoms i, with

di the number of non-hydrogen atoms to which atom i is

bonded
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A.2 Descriptor ranks and p-values from KS-statistics

Table A.2: Descriptor ranks and p-values.

Rank ab1D p-value ab2A p-value

1 std dim3 0.0015 PEOE VSA FPNEG 0.0035
2 PEOE VSA FPNEG 0.0083 a ICM 0.0071
3 a ICM 0.0124 PEOE VSA NEG
4 dens apol
5 Q VSA FNEG 0.0141 SMR VSA5
6 Q VSA FPOS chi1v C 0.0099
7 FCASA- chi1 C
8 Q VSA POS 0.0161 PEOE RPC+
9 KierA3 PEOE VSA HYD
10 Q VSA NEG 0.0206 a hyd
11 FASA- SMR
12 a nH 0.0233 chi0v C 0.0138
13 b 1rotR chi1v
14 b rotR PEOE VSA FHYD
15 density 0.0263 PEOE VSA FPOL
16 SlogP VSA7 0.0297 E str
17 Kier3 0.0334 mr
18 KierFlex SlogP
19 SlogP VSA4 logP(o/w)
20 glob a nC 0.0189
21 vsa acc 0.0375 chi0 C
22 a aro 0.0420 chi1
23 b ar PEOE VSA-1
24 b rotN 0.0471 rgyr
25 E vsa hyd
26 bpol weinerPath 0.0256
27 SMR VSA3 b count
28 zagreb 0.0526 Q VSA HYD
29 SMR VSA0 SlogP VSA1
30 PEOE VSA+0 0.0587 vdw vol
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Table A.2: Descriptor ranks and p-values (cont.).

Rank ab2B p-value ab3A p-value

1 PEOE VSA FPPOS 0.0055 balabanJ 0.0001
2 AM1 HOMO 0.0109 MNDO HF 0.0003
3 AM1 IP PEOE VSA FPPOS 0.0004
4 PEOE RPC+ 0.0124 FASA+ 0.0004
5 FASA+ 0.0161 AM1 HOMO 0.0007
6 MNDO HF 0.0233 PM3 HOMO
7 chi1 C 0.0263 AM1 IP
8 PEOE VSA FHYD PM3 IP
9 PEOE VSA FPOL MNDO HOMO 0.0010
10 Q VSA FPPOS MNDO IP
11 MNDO HOMO 0.0334 PEOE VSA+5 0.0014
12 MNDO IP PEOE VSA POL
13 PM3 HOMO Q RPC+ 0.0016
14 PM3 IP RPC+
15 PEOE VSA PPOS 0.0375 b 1rotR 0.0029
16 glob PEOE VSA PNEG
17 PM3 LUMO 0.0471 PEOE VSA PPOS
18 FCASA+ PEOE VSA POS 0.0039
19 PEOE VSA FNEG 0.0526 FCASA+
20 PEOE VSA FPOS SlogP VSA2 0.0045
21 Q RPC+ 0.0653 SlogP VSA1 0.0060
22 RPC+ SMR VSA0
23 AM1 LUMO 0.0727 PEOE VSA+0 0.0091
24 PEOE PC+ a nO 0.0118
25 PEOE PC- PEOE VSA FHYD
26 PEOE VSA POL PEOE VSA FPOL
27 E str vsa other
28 SMR VSA6 b 1rotN 0.0135
29 std dim2 0.0894 b rotR
30 Q RPC- 0.0989 PEOE VSA-5
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Table A.2: Descriptor ranks and p-values (cont.).

Rank ab3B p-value ab5B p-value

1 SlogP VSA8 0.0323 KierA3 0.0010
2 std dim2 0.0429 KierA1 0.0064
3 Density 0.0460 KierA2
4 PEOE VSA POS 0.0604 KierFlex
5 Dens 0.0645 Kier2 0.0097
6 balabanJ Kier3
7 PEOE VSA+0 b 1rotR 0.0119
8 PEOE RPC- 0.0836 balabanJ 0.0176
9 PM3 HOMO rgyr
10 PM3 IP std dim1
11 Q VSA PPOS 0.0891 b 1rotN 0.0213
12 Kier2 chi1v
13 Kier3 Q VSA POS 0.0257
14 AM1 HOMO 0.1139 b rotN 0.0309
15 AM1 IP MNDO HF
16 zagreb VDistEq 0.0370
17 KierA2 0.1210 PEOE VSA+0
18 a ICM 0.1617 std dim2 0.0440
19 KierA3 a IC 0.0618
20 KierFlex b rotR
21 SMR VSA5 bpol
22 VDistMa 0.2016 glob 0.0728
23 b 1rotR SMR VSA7 0.0854
24 b rotR chi0v C 0.0998
25 Q VSA FPPOS FASA+ 0.1161
26 MNDO HOMO PEOE PC+
27 MNDO IP vsa hyd
28 VDistEq 0.2127 PEOE VSA FPPOS 0.1346
29 b 1rotN PEOE VSA HYD
30 FCASA- 0.2242 Kier1
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Table A.2: Descriptor ranks and p-values (cont.).

Rank ab6A p-value

1 Kier3 0.0003
2 Kier2 0.0017
3 balabanJ 0.0026
4 VDistEq 0.0037
5 SlogP VSA8 0.0056
6 KierA3 0.0066
7 KierA2 0.0079
8 std dim2 0.0098
9 b rotR 0.0158
10 b 1rotR 0.0226
11 KierFlex 0.0304
12 b rotN 0.0351
13 MNDO HF 0.0368
14 FASA+
15 FCASA+
16 petitjean 0.0424
17 petitjeanSC
18 MNDO HOMO
19 MNDO IP
20 diameter 0.0557
21 E 0.0665
22 PEOE RPC+
23 AM1 HOMO 0.0757
24 AM1 IP
25 Q VSA FPPOS
26 PM3 HOMO
27 PM3 IP
28 SlogP VSA4
29 rgyr 0.0824
30 zagreb 0.0859
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Temporal integrity of an airborne odor stimulus is greatly affected by physi-

cal aspects of the odor delivery system. Chem Senses, 31(4):359–369.

Vosshall, L. B. (2000). Olfaction in drosophila. Curr Opin Neurobiol, 10(4):498–

503.

Vosshall, L. B., Wong, A. M., and Axel, R. (2000). An olfactory sensory map in

the fly brain. Cell, 102(2):147–159.

Wailzer, B., Klocker, J., Buchbauer, G., Ecker, G., and Wolschann, P. (2001). Pre-

diction of the aroma quality and the threshold values of some pyrazines us-

ing artificial neural networks. J Med Chem, 44(17):2805–2813.

Wildman, S. and Crippen, G. (1999). Prediction of physicochemical parame-

ters by atomic contributions. Journal of Chemical Information and Modeling,

39(5):868–873.

Winkler, D. A. and Burden, F. R. (2002). Application of neural networks to large

dataset QSAR, virtual screening, and library design. Methods in Molecular

Biology, 201:325–367.

100



Witten, I. H. and Frank, E. (2005). Data Mining: Practical machine learning tools

and techniques. Morgan Kaufmann, San Francisco, 2nd edition.

Wong, A. M., Wang, J. W., and Axel, R. (2002). Spatial representation of the

glomerular map in the drosophila protocerebrum. Cell, 109(2):229–241.

Wu, Y. and Takatsuka, M. (2004). The geodesic self-organizing map and its

error analysis. In Estivill-Castro, V., editor, Proceedings of the Twenty-Eighth

Australasian Conference on Computer Science, volume 38, pages 343–351, Dar-

linghurst. Australian Computer Society.

Xiao, Y.-D., Clauset, A., Harris, R., Bayram, E., Santago, P., and Schmitt, J. D.

(2005). Supervised self-organizing maps in drug discovery. 1. Robust behav-

ior with overdetermined data sets. J Chem Inf Model, 45(6):1749–1758.

Xu, P., Atkinson, R., Jones, D. N. M., and Smith, D. P. (2005). Drosophila

OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron,

45(2):193–200.

Zarzo, M. and Stanton, D. T. (2006). Identification of latent variables in a

semantic odor profile database using principal component analysis. Chem

Senses, 31(8):713–724.

Zhang, X. and Firestein, S. (2002). The olfactory receptor gene superfamily of

the mouse. Nat Neurosci, 5(2):124–133.

Zou, Z., Horowitz, L. F., Montmayeur, J. P., Snapper, S., and Buck, L. B. (2001).

Genetic tracing reveals a stereotyped sensory map in the olfactory cortex.

Nature, 414(6860):173–179.

Zozulya, S., Echeverri, F., and Nguyen, T. (2001). The human olfactory receptor

repertoire. Genome Biol, 2(6):RESEARCH0018.

Zupan, J. and Gasteiger, J. (1999). Neural Networks in Chemistry and Drug Design.

Wiley-VCH, Weinheim.

101



Zusammenfassung

Unser Geruchssinn vermittelt uns die Wahrnehmung der chemischen Welt. Im

Laufe der Evolution haben sich in unserem olfaktorischen System Mechanis-

men entwickelt, die wahrscheinlich optimal auf die Erfüllung dieser Aufga-

be angepasst sind. Die Analyse dieser Verarbeitungsstrategien verspricht Ein-

blicke in effiziente Algorithmen für die Kodierung und Verarbeitung chemi-

scher Information, deren Entwicklung und Anwendung dem Kern der Chemi-

einformatik entspricht.

In dieser Arbeit nähern wir uns der Entschlüsselung dieser Mechanismen

durch die rechnerische Modellierung von funktionellen Einheiten des olfakto-

rischen Systems. Hierbei verfolgten wir einen interdisziplinären Ansatz, der

die Gebiete der Chemie, der Neurobiologie und des maschinellen Lernens mit

einbezieht.

Funktionelle Charakterisierung von olfaktorischen Rezeptorneu-

ronen

Olfaktorische Rezeptoren arbeiten an der Schnittstelle zwischen dem chemi-

schen Raum und der Geruchswahrnehmung im Gehirn. Sie kodieren Eigen-

schaften von Geruchsmolekülen in Information, die von neuronalen Schalt-

kreisen im Gehirn weiterverarbeitet werden kann. Im ersten Teil dieser Arbeit

widmeten wir uns daher der Charakterisierung der Kodierungseigenschaften

der olfaktorischen Rezeptoren.

Basierend auf publizierten Antworten von sieben Rezeptorneuronklassen

der Fruchtfliege Drosophila melanogaster auf eine Auswahl von 47 Duftstoffen

konstruierten wir ein Modell, das die Antwort eines Rezeptorneurons auf einen

beliebigen olfaktorischen Stimulus ausgehend von dessen chemischer Struktur

vorhersagen konnte. Hierzu repräsentierten wir die Duftstoffe durch vektori-

elle chemische Deskriptoren physikochemischer Eigenschaften. Jeder Duftstoff

wurde somit durch eine Reihe von 203 Zahlen dargestellt. Mit diesen trainier-
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ten wir Künstliche Neuronale Netze darauf, aktivierende Duftstoffe von nicht-

aktivierenden zu unterscheiden. Dies geschah separat für jede der sieben Re-

zeptorneuronklassen.

Um die Vorhersagekraft der erhaltenen Modelle zu testen durchsuchten wir

eine Duftstoff-Datenbank nach aktivierenden Molekülen. Anschließend wur-

den in Kooperation mit Marien de Bruyne und Melanie Hähnel von der Freien

Universität Berlin in vivo Antworten von Rezeptorneuronen auf eine Auswahl

der gefundenen Duftstoffe getestet und mit den Vorhersagen verglichen.

Für die Mehrzahl der untersuchten Rezeptorneuronklassen fanden wir eine

Korrelation zwischen den Vorhersagen und den gemessenen Antworten. Der

Matthews Korrelationskoeffizient lag bei 0.85 für die ab3A-Neuronklasse, 0.69

für ab1D und ab2A, 0.68 für ab5B und 0.66 für die ab6A-Neuronklasse, was

wir als erfolgreiche Vorhersage werteten. Für die zwei verbleibenden Neuron-

klassen konnten wir jedoch keine verlässliche Vorhersage erstellen; die Korre-

lationskoeffizienten lagen bei 0.34 (ab3B) und 0.17 (ab2A).

Weiterhin konnten wir zeigen, dass für jede Neuronklasse eine andere Kom-

bination chemischer Eigenschaften am besten zur Aktivierungsvorhersage ge-

eignet ist. So können beispielsweise Aktivatoren von ab1D-Neuronen wie z.B.

Methyl Salicylat, Phenylacetaldehyd und Acetophenon am besten durch ihre

flache, scheibenähnliche Form und eine exponierte negative Partialladung be-

schrieben werden, wohingegen Neuronen der ab5B-Klasse größere Liganden

mit flexiblen Seitenketten wie z.B. Pentyl Acetat, 2-Heptanon oder 3-Octanol

zu bevorzugen scheinen.

Olfaktorische Rezeptorneuronen scheinen also unterschiedliche Kombina-

tionen chemischer Eigenschaften zu kodieren, und ähneln darin wiederum den

Deskriptoren, die wir ursprünglich zur Erstellung der Modelle benutzt haben.

Wir konnten zeigen, dass die Rezeptorantworten selbst auch wieder als De-

skriptoren zur Erstellung prädiktiver Modelle benutzt werden können, wenn

auch mit geringerer Vorhersagegenauigkeit.
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Modellierung des Antennallobus von Insekten mit selbstorgani-

sierenden Karten

Eine der faszinierendsten Eigenschaften des olfaktorischen Systems liegt in

der stereotypen Organisation der zweiten neuronalen Stufe, dem Antennal-

lobus in Insekten bzw. dem Bulbus olfactorius in Vertebraten. In dieser Struktur

konvergieren Axone von Rezeptorneuronen aus den nasalen Epithelia in so

genannten Glomeruli, wo sie Synapsen mit sekundären Projektionsneuronen

(in Insekten) bzw. Mithralzellen (in Vertebraten) bilden. Mehrere Indizien wei-

sen darauf hin, dass diese Struktur eine chemotopische Organisation aufweist,

d.h. dass ähnliche Duftstoffe nah beieinander liegende Areale dieser Struk-

tur aktivieren. Dieses Phänomen ermöglicht es zu untersuchen wie chemische

Ähnlichkeit in der Natur dargestellt wird.

Unser Ziel war es, die chemotopische Organisation des Antennallobus mit

selbstorganisierenden Merkmalskarten (SOMs) zu erforschen. Mithilfe von

SOMs können topologische Abbildungen der Eingabedaten erstellt werden,

was sie in diesem Szenario besonders nützlich erscheinen läßt. Sie erlauben ei-

ne algorithmisch gut beschriebene, reproduzierbare Projektion der dreidimen-

sionalen Anordnung der Glomeruli in die zweidimensionale Ebene.

Zu diesem Zweck entwickelten wir SOMMER, ein Programm zur Erstel-

lung und Visualisierung zwei- und dreidimensionaler SOMs. SOMMER bietet

rechteckige, toroidale, kubische und sphärische SOM-Topologien, die wir be-

nutzten um zwei- und dreidimensionale Modelle des Antennallobus von Dro-

sophila zu erstellen.

Wir benutzten die zweidimensionalen Modelle um darauf die Aktivierung

von Glomeruli in Antwort auf Duftstimuli darzustellen. In diesen Aktivie-

rungskarten wurde jedem Glomerulus die Feuerrate der Rezeptorneuronklasse

die seinen hauptsächlichen Eingang stellt eingefärbt. Wir erstellten solche Kar-

ten für einen publizierten Datensatz von Neuronantworten auf 110 Duftstoffe.

Anhand dieser Aktivierungskarten untersuchten wir welche chemischen
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Eigenschaften bevorzugt in den jeweiligen Glomeruli repräsentiert werden.

Wir berechneten 184 physikochemische Deskriptoren für jeden der Duftstof-

fe. Um die Ausprägung eines bestimmten Deskriptors in einem Glomerulus

zu quantifizieren berechneten wir anschließend den Median dieses Deskrip-

tors, wobei wir nur Duftstoffe mit einbezogen die den jeweiligen Glomerulus

zu aktivieren vermochten. Da jeder Deskriptor eine molekulare Eigenschaft

wiedergibt, erhielten wir eine Karte die die Verteilung der chemischen Eigen-

schaften auf dem Antennallobus reflektiert.

Die Analyse dieser Karte offenbarte eine klare Tendenz für chemotopische

Repräsentation des Molekulargewichts. Auch der Durchmesser eines Moleküls

(der mit der Kettenlänge zusammenhängt) zeigte eine chemotopische Ord-

nung, wenn auch in geringerer Ausprägung. Im Gegensatz dazu konnten wir

keine solche Ordnung für molekulare Flexibilität feststellen.

Eine neuartige Methode zur Verarbeitung und Klassifikation

chemischer Daten, inspiriert durch den Geruchssinn der Insek-

ten

Unser Ziel im letzten Teil dieser Arbeit war der Entwurf einer Methode zur Ver-

arbeitung chemischer Deskriptoren und Klassifikation von Molekülen, die auf

den im olfaktorischen System beobachteten Verarbeitungsstrategien basiert.

Aufbauend auf den Ergebnissen unserer vorangegangenen Studien erstellten

wir hierzu ein vereinfachtes rechnerisches Modell des gesamten olfaktorischen

Systems.

Hierbei lag unser Augenmerk vor allem auf der Erstellung eines Modells,

dass uns die Analyse bestimmter Aspekte rechnerischer Strategien ermöglichte,

und weniger auf einer biologisch korrekten Simulation.

Die erste Stufe olfaktorischer Verarbeitung modellierten wir mit “virtuel-

len Rezeptoren”, definiert als diskrete Punkte im chemischen Duftraum. Die-

ser Duftraum wird aufgespannt durch 184 physikochemische Deskriptoren die
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die chemischen Eigenschaften der Duftstoffe wiedergeben. Die Stärke der Ant-

wort eines virtuellen Rezeptors auf einen Duftstimulus wird dabei durch de-

ren Abstand im 184-dimensionalen Duftraum bestimmt: Je näher Rezeptor und

Duftstoff beieinander liegen, desto größer die Antwort.

Die Platzierung der virtuellen Rezeptoren ermittelten wir durch Trainie-

ren einer SOM im Duftraum, wobei die Koordinaten der Rezeptoren durch die

Prototyp-Vektoren der trainierten SOM gegeben wurden. Da SOMs die lokale

Topologie des Eingaberaumes bewahren, erhielten wir dadurch eine chemoto-

pische Repräsentation des Duftraumes, ähnlich jener die man auf dem Anten-

nallobus oder dem Bulbus olfactorius findet.

In der zweiten Stufe der olfaktorischen Verarbeitung werden im Anten-

nallobus die Rezeptorsignale dekorreliert. Wir implementierten diesen Schritt

durch korrelationsabhängige laterale Inhibition, wobei die Antwort eines Re-

zeptors um das nach Korrelation gewichtete Mittel aller anderen Rezeptoren

vermindert wurde. Hierbei entsteht eine Winner-Takes-Most-Situation, wobei

der Wettbewerb zwischen zwei Rezeptoren am stärksten ist wenn ihre Ant-

wortspektren höchste Korrelation zeigen. Zusätzlich führten wir den skalaren

Faktor q zur Gewichtung der gesamten Inhibition ein.

In der letzte Stufe unseres Modells ordneten wir den Eingabedaten eine

Wahrnehmungsqualität (einen Duft) zu. Das erreichten wir durch Training ei-

nes Naiven Bayes-Klassifikators auf den annotierten Düften der Duftstoffe,

wobei wir die verarbeiteten Signale als Eingangsdaten verwendeten.

Wir testeten die Leistungsfähigkeit unseres Modells mittels retrospektiven

Screenings einer Duftstoffdatenbank. Die Vorhersagegenauigkeit wurde hier-

bei durch die Fläche unter der Receiver-Operating-Charateristic-Kurve (Area

Under Curve, AUC) quantifiziert. Die Ergebnisse zeigten, dass die Repräsen-

tation chemischer Information in unserem Modell für diese Aufgabe geeignet

ist. Im Median über alle Düfte erreichten wir AUC-Werte von bis zu 0, 72 auf

unverarbeiteten Aktivierungsmustern, abhängig von der Anzahl virtueller Re-

zeptoren.
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Die Filterung der Aktivierungsmuster mit korrelationsabhängiger Inhibiti-

on verbesserte deren Klassifizierbarkeit: So stiegen die medianen AUC-Werte

für die höchste Anzahl virtueller Rezeptoren auf 0, 75 für q = 1 und 0, 79 für

q = 2. Denselben Trend konnten wir auch mit weniger Rezeptoren beobachten.

Wir konnten zeigen, dass diese Verarbeitungsmethode eine “moderate De-

korrelation” darstellt, d.h. dass eine restliche Korrelation zwischen den Ausga-

bedimensionen verbleibt. Dies steht im Gegensatz zu Datenanalysetechniken

wie der Hauptkomponentenanalyse, bei der die Ausgabedimensionen unkor-

reliert sind.

Bei einem Vergleich der Klassifikationsleistung auf unkorrelierten Mustern

(erhalten durch eine Hauptkomponentenanalyse der vektoriellen Deskripto-

ren) und der moderat dekorrelierten Muster wurden für beide ähnliche AUC-

Werte erreicht, jedoch bei verschiedenen Eingabedimensionen. Unkorrelierte

Muster zeigten die beste Klassifizierbarkeit bei niedriger Eingabedimensio-

nalität, wobei die durch korrelationsbasierte Inhibition gefilterten Muster bei

höherer Dimensionalität beste Ergebnisse lieferten. Allerdings verschlechterte

sich die Klassifizierbarkeit unkorrelierter Muster rapide mit ansteigender Di-

mensionalität, wohingegen die moderat dekorrelierten Muster mit steigender

Dimensionalität eine “Sättigung” erreichten, d.h. auf konstant hohem Niveau

blieben.

Die Anwendung dieser Methode ist nicht auf olfaktorische Daten be-

schränkt. Dies konnten wir durch ein erfolgreiches virtuelles Screening einer

pharmazeutischen Datenbank zeigen.
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